International Journal of Applied Mathematics

Volume 28 No. 2 2015, 165-176

ISSN: 1311-1728 (printed version); ISSN: 1314-8060 (on-line version)

doi: http://dx.doi.org/10.12732/ijam.v28i2.7

OSCILLATION CRITERIA FOR A CLASS OF SECOND-ORDER NONLINEAR DIFFERENTIAL EQUATIONS

Bülent Ayanlar

Department of Mathematics and Computer Science Faculty of Science and Letters Istanbul Arel University Tepekent-Büyükçekmece, 34537, Istanbul, TURKEY

Abstract: By using the classical variational principle and averaging technique, several oscillation criteria are established for nonlinear second-order equations of the form

$$\left(r(t) \left| u' \right|^{p-2} u' \right)' + g(t, u, u')u' + a(t)f(u) = e(t),$$

where p > 1 is a real constant.

AMS Subject Classification: 34C10

Key Words: differential equations, second order, averaging technique, oscillation

1. Introduction

In the present paper we investigate the oscillation behavior for a class of secondorder nonlinear differential equations of the form

$$\left(r(t)\left|u'\right|^{p-2}u'\right)' + g(t, u, u')u' + a(t)f(u) = e(t), \tag{1.1}$$

where

Received: January 20, 2015

© 2015 Academic Publications

- p > 1 is a real constant;
- $r, a \in C^1(\mathbb{R}_+, (0, \infty))$;
- $g \in C(\mathbb{R}_+ \times \mathbb{R} \times \mathbb{R}, \mathbb{R}_+)$;
- $f \in C(\mathbb{R}, \mathbb{R})$, and $e \in C(\mathbb{R}_+, \mathbb{R})$;

and where \mathbb{R}_+ denotes the set of all nonnegative real numbers. Throughout the paper we shall also assume that the following conditions are true for p, f, g:

- (C_1) xf(x) > 0 for $x \neq 0$ and
- (C_2) there exists a continuous function p(t) such that

$$\frac{g(t, x, y)y}{f(x)} \geqslant \frac{p(t)|y|^{p-2}y}{f(x)}$$
 for $x \neq 0, y \neq 0$.

By a solution of (1.1), we mean a function $u \in C^1[T_u, \infty), T_u \geqslant t_0$, which has the property

$$r(t) |u'|^{p-2} u' \in C^1[T_u, \infty)$$

and satisfies Eq. (1.1). We restrict our attention only to the nontrivial solutions of Eq. (1.1), i.e., to the solutions u(t) such that

$$\sup\{|u(t)|: t \geqslant T\} > 0$$

for all $T \ge T_u$. A nontrivial solution of Eq. (1.1) is called *oscillatory* if it has arbitrarily large zeros; otherwise, it is said to be *nonoscillatory*. Eq. (1.1) is said to be *oscillatory* if all its solutions are oscillatory.

The class of equations we are working with can be considered as a natural generalization of the class of Emden–Fowler-type equations of the form

$$\left(r(t)\left|u'\right|^{p-2}u'\right)' + c(t)\left|u'\right|^{p-2}u' + a(t)\left|u\right|^{p-2}u = e(t), \tag{1.2}$$

and of the class of the Lienard-type equations of the form

$$u'' + \Phi(u, u')u' + h(u) = e(t). \tag{1.3}$$

As in the literature, we will use an auxiliary function $H(t,s) \in C(D,\mathbb{R})$ having the following properties:

(i)
$$H(t,t)=0$$
, $H(t,s)>0$ for $t>s$,

(ii) H has partial derivatives $\frac{\partial H}{\partial t}$ and $\frac{\partial H}{\partial s}$ on D such that

$$\frac{\partial H}{\partial t} = h_1(t,s)\sqrt{H(t,s)}, \quad \frac{\partial H}{\partial s} = -h_2(t,s)\sqrt{H(t,s)},$$

where $D = \{(t, s) : t_0 \le s \le t < \infty\}, h_1, h_2 \in L_{loc}(D, \mathbb{R}_+).$

2. f(x) is Monotone Increasing

In this section, we shall deal with the oscillation for Eq. (1.1) under the assumptions (C_1) , (C_2) , and the following assumption

 (C_3) f'(x) exists and

$$\frac{f'(x)}{|f(x)|^{(p-2)/(p-1)}} \geqslant \gamma > 0,$$

for some nonnegative constant γ and for all $x \in \mathbb{R} \setminus \{0\}$.

Theorem 2.1. Suppose that the conditions (C_1) , (C_2) and (C_3) are all true and for any $T \ge t_0$ there exist $T \le a_1 < b_1 \le a_2 < b_2$ such that

$$e(t) \left\{ \begin{array}{l} \leq 0, \ t \in [a_1, b_1] \\ \geqslant 0, \ t \in [a_2, b_2] \end{array} \right\}. \tag{2.1}$$

If there exist some $c_i \in (a_i, b_i)$, where i = 1, 2, a function H(t, s) satisfying (i)–(ii) and a positive function $\rho \in C^1([t_0, \infty), \mathbb{R})$ such that

$$\frac{1}{H^{p}(c_{i}, a_{i})} \int_{a_{i}}^{c_{i}} \left[H^{p}(s, a_{i}) a(s) \rho(s) - \Phi r(s) \rho(s) H_{1}^{p}(s, a_{i}) \right] ds$$

$$+\frac{1}{H^{p}(b_{i},c_{i})}\int_{c_{i}}^{b_{i}}\left[H^{p}(b_{i},s)\,a(s)\rho(s)-\Phi r(s)\rho(s)H_{2}^{p}(b_{i},s)\right]ds>0$$
(2.2)

for i = 1, 2, where

$$\Phi = \frac{[(p-1)]^{p-1}}{(\gamma p)^{p-1} p},$$

$$H_1(t,s) = \left| ph_1(t,s)\sqrt{H(t,s)} + H(t,s) \left(\frac{\rho'(t)}{\rho(t)} - \frac{p(t)}{r(t)} \right) \right|,$$

$$H_2(t,s) = \left| ph_2(t,s)\sqrt{H(t,s)} + H(t,s) \left(\frac{\rho'(s)}{\rho(s)} - \frac{p(s)}{r(s)} \right) \right|,$$

then Eq. (1.1) is oscillatory.

Proof. Suppose, towards a contradiction, that u(t) is a nonoscillatory solution of Eq. (1.1), say, $u(t) \neq 0$ on $[T_0, \infty)$ for some sufficiently large $T_0 \geqslant t_0$. Define

$$w(t) = \rho(t) \frac{r(t) |u'(t)|^{p-2} u'(t)}{f(u(t))}, \ t \geqslant T_0.$$
 (2.3)

Then differentiating (2.3) and making use of Eq. (1.1), assumptions (C_1) , (C_2) and (C_3) , we have

$$w'(t) = -a(t)\rho(t) + \frac{e(t)}{f(u(t))}\rho(t) - \rho(t)\frac{g(t, u, u')u'}{f(u(t))}$$

$$-\rho(t)r(t)\frac{f'(u(t))}{f^{2}(u(t))} |u'(t)|^{p} + \frac{\rho'(t)}{\rho(t)}w(t)$$

$$\leq -a(t)\rho(t) + \frac{e(t)}{f(u(t))}\rho(t) - \rho(t)p(t)\frac{|u'(t)|^{p-2}u'(t)}{f(u(t))}$$

$$-\rho(t)r(t)\frac{f'(u(t))}{f^{2}(u(t))} |u'(t)|^{p} + \frac{\rho'(t)}{\rho(t)}w(t)$$

$$\leq -a(t)\rho(t) + \frac{e(t)}{f(u(t))}\rho(t) - \gamma(\rho(t)r(t))^{1/(1-p)} |w(t)|^{p/(p-1)}$$

$$+ \left(\frac{\rho'(t)}{\rho(t)} - \frac{p(t)}{r(t)}\right)w(t). \tag{2.4}$$

By the conditions of the theorem, we can choose $a_i, b_i \ge T_0$ for i = 1, 2 such that $e(t) \le 0$ on the interval $I_1 = [a_1, b_1]$ and u(t) > 0, or $e(t) \ge 0$ on the interval $I_2 = [a_2, b_2]$ and u(t) < 0.

By (2.4),

$$w'(t) \leqslant -a(t)\rho(t) - \gamma \left(\rho(t)r(t)\right)^{1/(1-p)} |w(t)|^{p/(p-1)} + \left(\frac{\rho'(t)}{\rho(t)} - \frac{p(t)}{r(t)}\right) w(t).$$
(2.5)

on both intervals I_1 and I_2 .

On one hand, multiplying $H^p(t,s)$ through (2.5) and integrating it (with t replaced by s) over $[c_i,t)$ for $t \in [c_i,b_i)$, i=1,2, by using hypotheses (i), (ii), we have for $s \in [c_i,t)$

$$\int_{c_i}^t H^p(t,s) a(s)\rho(s)ds \leqslant -\int_{c_i}^t H^p(t,s) w'(s)ds$$

$$+ \int_{c_{i}}^{t} H^{p}(t,s) \left[\left(\frac{\rho'(s)}{\rho(s)} - \frac{p(s)}{r(s)} \right) w(s) - \gamma \left(\rho(s)r(s) \right)^{1/(1-p)} |w(s)|^{p/(p-1)} \right] ds$$

$$= H^{p}(t,c_{i}) w(c_{i}) - \int_{c_{i}}^{t} pH^{p-1}(t,s) h_{2}(t,s) \sqrt{H(t,s)} w(s) ds$$

$$+ \int_{c_{i}}^{t} H^{p}(t,s) \left[\left(\frac{\rho'(s)}{\rho(s)} - \frac{p(s)}{r(s)} \right) w(s) - \gamma \left(\rho(s)r(s) \right)^{1/(1-p)} |w(s)|^{p/(p-1)} \right] ds$$

$$\leq H^{p}(t,c_{i}) w(c_{i}) + \int_{c_{i}}^{t} [H^{p-1}(t,s) H_{2}(t,s) |w(s)|$$

$$-\gamma H^{p}(t,s) \left(\rho(s)r(s) \right)^{1/(1-p)} |w(s)|^{p/(p-1)}] ds. \tag{2.6}$$

Given t and s, set

$$F(v) := H^{p-1}H_2v - \gamma H^p (\rho r)^{1/(1-p)} v^{p/(p-1)}.$$

where v > 0.

Since

$$F'(v) = H^{p-1}H_2 - \frac{\gamma p}{p-1}H^p (\rho r)^{1/(1-p)} v^{1/(p-1)},$$

F(v) attains the maximum value at

$$v = r\rho \left(\frac{(p-1)H_2}{\gamma pH}\right)^{p-1},$$

and since

$$F(v) \leqslant F_{\text{max}} = \Phi r \rho H_2^p, \tag{2.7}$$

we get, using (2.7),

$$\int_{c_i}^{t} H^p(b_i, s) a(s) \rho(s) ds \leqslant H^p(b_i, c_i) w(c_i)$$

$$+ \Phi \int_{c_i}^{b_i} r(s) \rho(s) H_2^p(b_i, s) ds. \tag{2.8}$$

Letting $t \to b_i^-$ in (2.6), we obtain

$$\int_{c_{i}}^{b_{i}} H^{p}(t,s) a(s) \rho(s) ds \leq H^{p}(t,c_{i}) w(c_{i}) + \Phi \int_{c_{i}}^{t} r(s) \rho(s) H_{2}^{p}(t,s) ds.$$
 (2.9)

On the other hand, multiplying again by H^p both parts of (2.5), and integrating (with t replaced by s) over $(t, c_i]$ for $t \in (a_i, c_i]$, i = 1, 2, instead, by using hypotheses (i)–(ii), we yield for $s \in (t, c_i]$

$$\int_{t}^{c_{i}} H^{p}(s,t) a(s)\rho(s)ds \leq -\int_{t}^{c_{i}} H^{p}(s,t) w'(s)ds
+ \int_{t}^{c_{i}} H^{p}(s,t) \left[\left(\frac{\rho'(s)}{\rho(s)} - \frac{p(s)}{r(s)} \right) w(s) - \gamma \left(\rho(s)r(s) \right)^{1/(1-p)} |w(s)|^{p/(p-1)} \right] ds
= -H^{p}(c_{i},t) w(c_{i}) + \int_{t}^{c_{i}} pH^{p-1}(s,t) h_{1}(s,t) \sqrt{H(s,t)} w(s) ds
+ \int_{t}^{c_{i}} H^{p}(s,t) \left[\left(\frac{\rho'(s)}{\rho(s)} - \frac{p(s)}{r(s)} \right) w(s) - \gamma \left(\rho(s)r(s) \right)^{1/(1-p)} |w(s)|^{p/(p-1)} \right] ds
\leq -H^{p}(c_{i},t) w(c_{i}) + \int_{t}^{c_{i}} [H^{p-1}(s,t) H_{1}(s,t) |w(s)|
- \gamma H^{p}(s,t) (\rho(s)r(s))^{1/(1-p)} |w(s)|^{p/(p-1)}] ds
\leq -H^{p}(c_{i},t) w(c_{i}) + \Phi \int_{t}^{c_{i}} r(s)\rho(s) H_{1}^{p}(s,t) ds.$$
(2.10)

We get the last inequality in (2.10) by following the proof of (2.8). Letting $t \to a_i^+$ in (2.10) leads to

$$\int_{a_{i}}^{c_{i}} H^{p}(s, a_{i}) a(s) \rho(s) ds \leq -H^{p}(c_{i}, a_{i}) w(c_{i})$$

$$+\Phi \int_{a_{i}}^{c_{i}} r(s) \rho(s) H_{1}^{p}(s, a_{i}) ds. \tag{2.11}$$

Finally, dividing (2.9) and (2.11) by $H^{p}(b_{i}, c_{i})$ and $H^{p}(c_{i}, a_{i})$, respectively, and then adding them, we obtain the inequality

$$\frac{1}{H^{p}(c_{i}, a_{i})} \int_{a_{i}}^{c_{i}} H^{p}(s, a_{i}) a(s) \rho(s) ds + \frac{1}{H^{p}(b_{i}, c_{i})} \int_{c_{i}}^{b_{i}} H^{p}(b_{i}, s) a(s) \rho(s) ds$$

$$\leqslant \frac{1}{H^{p}(c_{i}, a_{i})} \Phi \int_{a_{i}}^{c_{i}} r(s) \rho(s) H_{1}^{p}(s, a_{i}) ds$$

$$+ \frac{1}{H^{p}(b_{i}, c_{i})} \Phi \int_{a_{i}}^{b_{i}} H_{2}^{p}(b_{i}, s) a(s) \rho(s) ds, \qquad (2.12)$$

which contradict (2.2). The proof of Theorem 2.1 is completed.

The following result is an easy corollary of Theorem 2.1.

Corollary 2.2. Suppose that the hypotheses in Theorem 2.1 hold and a function H(t,s) satisfies the conditions (i)–(ii). If there exist some $c_i \in (a_i,b_i)$, i = 1, 2, and some positive function $\rho \in C^1([t_0, \infty), \mathbb{R})$ such that

$$\int_{a_{i}}^{c_{i}} \left[H^{p}(s, a_{i}) a(s) \rho(s) - \Phi r(s) \rho(s) H_{1}^{p}(s, a_{i}) \right] ds > 0$$
 (2.13)

$$\int_{c_{i}}^{b_{i}} \left[H^{p}(b_{i}, s) a(s) \rho(s) - \Phi r(s) \rho(s) H_{2}^{p}(b_{i}, s) \right] ds > 0$$
 (2.14)

for i = 1, 2, where γ , H_1 , H_2 , Φ are similar to ones in Theorem 2.1, then Eq. (1.1) is oscillatory.

Specifically, if a function $H := H(t,s) \in C(D,\mathbb{R})$ which satisfies (i)–(ii) is such that the following additional condition

(iii)
$$h_1(t-s) = h_2(t-s),$$

is true for H. Then denoting $h_k(t-s)$ where k=1,2 by h(t-s), and assuming that $\rho(t) \equiv 1$, we derive one more useful corollary from Theorem 2.1:

Corollary 2.3. Suppose that for any $T \ge t_0$, there exist $T \le a_1 < 2c_1 - a_1 \le a_2 < 2c_2 - a_2$ such that

$$e(t) \left\{ \begin{array}{l} \leq 0, \ t \in [a_1, 2c_1 - a_1] \\ \geq 0, \ t \in [a_2, 2c_2 - a_2] \end{array} \right\}. \tag{2.15}$$

If there exists a function H := H(t - s) having the form described above and satisfying the inequality

$$\int_{a_{i}}^{c_{i}} H^{p}(s - a_{i}) \left[a(s) + a(2c_{i} - s) \right] ds$$

$$>\Phi \int_{a_i}^{c_i} \left[r(s) + r(2c_i - s) \right] \left(h(s - a_i) \sqrt{H(s - a_i)} \right)^p ds,$$
 (2.16)

for i = 1, 2 and γ , and if all other hypotheses listed in Theorem 2.1 are true, then Eq. (1.1) is oscillatory.

The proof of the corollary is similar to the proof of Theorem 2.2 in [4], so we skip it.

Remark 2.4. It can be verified that we can replace the hypothesis concerning the function e in Theorem 2.1 with the hypothesis

$$e(t) \left\{ \begin{array}{l} \geqslant 0, \ t \in [a_1, b_1] \\ \leqslant 0, \ t \in [a_2, b_2] \end{array} \right\}.$$

3. f(x) is not Monotone Increasing

In this section, we shall mainly consider the oscillation problem for Eq. (1.1), assuming as before the conditions (C_1) and (C_2) and the condition stating that

 (C_4) f(x) satisfies

$$\frac{f(x)}{x} \geqslant K |x|^{q-2},$$

for $x \neq 0$, where K > 0 and q > 1 be constant.

Lemma 3.1 (Hölder's inequality). If A and B are nonnegative real numbers, then

$$\frac{1}{p}A^{p} + \frac{1}{q}B^{q} \geqslant AB, \text{ for } \frac{1}{p} + \frac{1}{q} = 1.$$

Theorem 3.2. Suppose the conditions (C_1) , (C_2) , (C_3) , and (C_4) are all true for the function

$$f(x) = |x(t)|^{p-2}x(t)$$

and that for any $T \geqslant t_0$, there exist $T \leqslant a_1 < b_1 \leqslant a_2 < b_2$ such that (2.1) holds and $a(t) \geqslant 0$ for $t \in [a_1, b_1] \cup [a_2, b_2]$.

If there exist some $c_i \in (a_i, b_i)$ for i = 1, 2, H(t, s) satisfying (i)-(ii) and a positive function $\rho \in C^1([t_0, \infty), \mathbb{R})$ such that

$$\frac{1}{H^{p}(c_{i}, a_{i})} \int_{a_{i}}^{c_{i}} \left[H^{p}(s, a_{i}) Q(s) \rho(s) - \Phi r(s) \rho(s) H_{1}^{p}(s, a_{i}) \right] ds$$

$$+\frac{1}{H^{p}(b_{i},c_{i})}\int_{c_{i}}^{b_{i}}\left[H^{p}(b_{i},s)Q(s)\rho(s)-\Phi r(s)\rho(s)H_{2}^{p}(b_{i},s)\right]ds>0$$
(3.1)

for i=1,2, where H_1,H_2 , Φ are defined as in Theorem 2.1 and $Q(t)=[Ka(t)]^{p/q}|e(t)|^{(q-p)/q}$, then Eq. (1.1) is oscillatory.

Proof. Suppose otherwise: let u(t) be a nonoscillatory solution of Eq. (1.1), say $u(t) \neq 0$ on $[T_0, \infty)$ for some sufficiently large $T_0 \geqslant t_0$. Define

$$v(t) = \rho(t) \frac{r(t) |u'(t)|^{p-2} u'(t)}{|u(t)|^{p-2} u(t)}, \quad t \geqslant T_0.$$
(3.2)

Then differentiating (3.2) and making use of Eq. (1.1) and assumptions (C_3) – (C_4) , we obtain

$$v'(t) = \frac{e(t)}{|u(t)|^{p-2} u(t)} \rho(t) - \rho(t) \frac{g(t, u, u')u'}{|u(t)|^{p-2} u(t)} - \rho(t) \frac{a(t)f(u)}{|u(t)|^{p-2} u(t)}$$
$$-(p-1)\rho(t)r(t) \frac{|u'(t)|^p}{|u(t)|^p} + \frac{\rho'(t)}{\rho(t)} v(t)$$
$$\leq \frac{e(t)}{|u(t)|^{p-2} u(t)} \rho(t) + \left(\frac{\rho'(t)}{\rho(t)} - \frac{p(t)}{r(t)}\right) v(t)$$

$$-K\rho(t)a(t)|u(t)|^{q-p} - (p-1)\rho(t)r(t)\frac{|u'(t)|^p}{|u(t)|^p}$$

$$\leq -\rho(t)\left(-\frac{e(t)}{|u(t)|^{p-2}u(t)} + Ka(t)|u(t)|^{q-p}\right)$$

$$-(p-1)\left[\rho(t)r(t)\right]^{1/(1-p)}|v(t)|^{p/(p-1)} + \left(\frac{\rho'(t)}{\rho(t)} - \frac{p(t)}{r(t)}\right)v(t). \tag{3.3}$$

By the hypotheses, we can choose $a_i, b_i \ge 0$ for i = 1, 2 such that $e(t) \le 0$ on the interval $I_1 = [a_1, b_1]$ with $a_1 < b_1$ and u(t) > 0; or $e(t) \ge 0$ on the interval $I_2 = [a_2, b_2]$ with $a_2 < b_2$ and u(t) < 0. Thus, by Hölder's inequality, we have

$$-\frac{e(t)}{|u(t)|^{p-2}u(t)} + Ka(t)|u(t)|^{q-p} = \frac{|e(t)|}{|u(t)|^{p-1}} + Ka(t)|u(t)|^{q-p}$$

$$\geqslant \frac{q-p}{q} \left[\frac{|e(t)|^{(q-p)/q}}{|u(t)|^{(p-1)(q-p)/q}} \right]^{q/(q-p)}$$

$$+ \frac{p}{a} \left[(Ka(t))^{p/q} u^{(p-1)(q-p)/q} \right]^{q/p} \geqslant Q(t)$$
(3.4)

on the interval $I_1 = [a_1, b_1]$. Similarly,

$$-\frac{e(t)}{|u(t)|^{p-2}u(t)} + Ka(t)|u(t)|^{q-p} = \frac{|e(t)|}{|u(t)|^{p-1}} + Ka(t)|u(t)|^{q-p}$$

$$\geqslant \left[Ka(t)^{p/q}e(t)^{(q-p)/q}\right] = Q(t). \tag{3.5}$$

on the interval $I_2 = [a_2, b_2]$.

It follows from (3.4), (3.5), and (3.3) that the function v(t) satisfies

$$v'(t) \leq -\rho(t)Q(t) - (p-1)\left[\rho(t)r(t)\right]^{1/(1-p)} |v(t)|^{p/(p-1)} + \left(\frac{\rho'(t)}{\rho(t)} - \frac{p(t)}{r(t)}\right)v(t).$$
(3.6)

on both intervals I_1 and I_2 .

The rest of the proof is similar to that of Theorem 2.1 and hence omitted.

The following two corollaries are similar to Corollaries 2.2–2.3.

Corollary 3.3. Suppose that all hypotheses in Theorem 3.2 hold and H(t,s) is a function satisfying the conditions (i)–(ii).

If there exist some $c_i \in (a_i, b_i)$, i = 1, 2, and some positive function $\rho \in C^1([t_0, \infty), \mathbb{R})$ such that

$$\int_{a_{i}}^{c_{i}} \left[H^{p}(s, a_{i}) Q(s) \rho(s) - \Phi r(s) \rho(s) H_{1}^{p}(s, a_{i}) \right] ds > 0$$
(3.7)

$$\int_{c_{i}}^{b_{i}} \left[H^{p}(b_{i}, s) Q(s) \rho(s) - \Phi r(s) \rho(s) H_{2}^{p}(b_{i}, s) \right] ds > 0$$
(3.8)

for i = 1, 2, where γ , H_1 , H_2 , and Φ are similar to that ones in Theorem 3.2, then Eq. (1.1) is oscillatory.

The second corollary is an analog of Corollary 2.3.

Corollary 3.4. Suppose that for any $T \ge t_0$, there exist $T \le a_1 < 2c_1 - a_1 \le a_2 < 2c_2 - a_2$ such that (2.15) holds for the function e, and $\rho \equiv 1$.

If there exists a function H := H(t-s) satisfying the conditions (i)–(iii) such that

$$\int_{a_i}^{c_i} H^p(s - a_i) [Q(s) + Q(2c_i - s)] ds$$

$$> \Phi \int_{a_i}^{c_i} \left[r(s) + r(2c_i - s) \right] \left(h(s - a_i) \sqrt{H(s - a_i)} \right)^p ds,$$
 (3.9)

for i = 1, 2, then Eq. (1.1) is oscillatory.

Remark 3.5. Likewise, we can replace the condition (2.15) in for the function e in Corollary 2.3 to the condition in Remark 2.4.

References

 D. Çakmak and A. Tiryaki, Oscillation criteria for certain forced secondorder nonlinear differential equations, Appl. Math. Lett., 17 (2004), 275-279.

[2] H.L. Hong, C.C. Yeh and C.H. Hong, Oscillation criteria for nonlinear differential equations with integrable coefficient, *Math. Nachr.*, **278**, No 1-2 (2005), 145-153.

- [3] F. Jiang and F. Meng, New oscillation criteria for a class of second-order nonlinear forced differential equations, J. Math. Anal. Appl., 336 (2007), 1476-1485.
- [4] Q. Kong, Interval criteria for oscillation of second-order linear ordinary differential equations, J. Math. Anal. Appl., 229 (1999), 258-270.
- [5] W.T. Li, Interval oscillation criteria for second-order quasi-linear nonhomogeneous differential equations with damping, Appl. Math. Comput., 147 (2004), 753-763.
- [6] A. Tiryaki and B. Ayanlar, Oscillation theorems for certain nonlinear differential equations of second order, Comput. Math. Appl., 47 (2004), 149-159.
- [7] A. Tiryaki and A. Zafer, Global existence and boundedness for a class of second-order nonlinear differential equations, Appl. Math. Lett., 17 (2013), 939-944.
- [8] A. Tiryaki, D. Çakmak and B. Ayanlar, On the oscillation of certain second-order nonlinear differential equations, J. Math. Anal. Appl., 281 (2003), 565-574.
- [9] J.S. Wong, Second order nonlinear forced oscillations, SIAM J. Math. Anal., 19, No 3 (1998), 667-675.