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Abstract: By using the classical variational principle and averaging tech-
nique, several oscillation criteria are established for nonlinear second-order
equations of the form
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where p > 1 is a real constant.
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1. Introduction

In the present paper we investigate the oscillation behavior for a class of second-
order nonlinear differential equations of the form

(

r(t)
∣

∣u′
∣

∣

p−2
u′
)

′

+ g(t, u, u′)u′ + a(t)f(u) = e(t), (1.1)

where
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• p > 1 is a real constant;

• r, a ∈ C1 (R+, (0,∞)) ;

• g ∈ C (R+ × R× R,R+) ;

• f ∈ C(R,R), and e ∈ C(R+,R);

and where R+ denotes the set of all nonnegative real numbers. Throughout the
paper we shall also assume that the following conditions are true for p, f, g:

(C1) xf(x) > 0 for x 6= 0 and

(C2) there exists a continuous function p(t) such that

g(t, x, y)y

f(x)
>

p(t) |y|p−2 y

f(x)
for x 6= 0, y 6= 0.

By a solution of (1.1), we mean a function u ∈ C1[Tu,∞), Tu > t0, which
has the property

r(t)
∣

∣u′
∣

∣

p−2
u′ ∈ C1 [Tu,∞)

and satisfies Eq. (1.1). We restrict our attention only to the nontrivial solutions
of Eq. (1.1), i.e., to the solutions u(t) such that

sup {|u(t)| : t > T} > 0

for all T > Tu. A nontrivial solution of Eq. (1.1) is called oscillatory if it has
arbitrarily large zeros; otherwise, it is said to be nonoscillatory. Eq. (1.1) is
said to be oscillatory if all its solutions are oscillatory.

The class of equations we are working with can be considered as a natural
generalization of the class of Emden–Fowler-type equations of the form

(

r(t)
∣

∣u′
∣

∣

p−2
u′
)

′

+ c(t)
∣

∣u′
∣

∣

p−2
u′ + a(t) |u|p−2 u = e(t), (1.2)

and of the class of the Lienard-type equations of the form

u′′ +Φ(u, u′)u′ + h(u) = e(t). (1.3)

As in the literature, we will use an auxiliary function H(t, s) ∈ C(D,R)
having the following properties:

(i) H(t, t)=0, H(t, s) > 0 for t > s,
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(ii) H has partial derivatives
∂H

∂t
and

∂H

∂s
on D such that

∂H

∂t
= h1(t, s)

√

H(t, s),
∂H

∂s
= −h2(t, s)

√

H(t, s),

where D = {(t, s) : t0 6 s 6 t < ∞}, h1, h2 ∈ Lloc(D,R+).

2. f(x) is Monotone Increasing

In this section, we shall deal with the oscillation for Eq. (1.1) under the as-
sumptions (C1), (C2), and the following assumption

(C3) f ′(x) exists and
f ′(x)

|f(x)|(p−2)/(p−1)
> γ > 0,

for some nonnegative constant γ and for all x ∈ R \ {0}.

Theorem 2.1. Suppose that the conditions (C1), (C2) and (C3) are all

true and for any T > t0 there exist T 6 a1 < b1 6 a2 < b2 such that

e(t)

{

6 0, t ∈ [a1, b1]
> 0, t ∈ [a2, b2]

}

. (2.1)

If there exist some ci ∈ (ai, bi), where i = 1, 2, a function H(t, s) satisfying

(i)–(ii) and a positive function ρ ∈ C1 ([t0,∞) ,R) such that

1

Hp(ci, ai)

ci
∫

ai

[Hp (s, ai) a(s)ρ(s)− Φr(s)ρ(s)Hp
1 (s, ai)] ds

+
1

Hp(bi, ci)

bi
∫

ci

[Hp (bi, s) a(s)ρ(s)−Φr(s)ρ(s)Hp
2 (bi, s)] ds > 0 (2.2)

for i = 1, 2, where

Φ =
[(p− 1)]p−1

(γp)p−1 p
,

H1 (t, s) =

∣

∣

∣

∣

ph1(t, s)
√

H(t, s) +H(t, s)

(

ρ′(t)

ρ(t)
−

p(t)

r(t)

)
∣

∣

∣

∣

,

H2 (t, s) =

∣

∣

∣

∣

ph2(t, s)
√

H(t, s) +H(t, s)

(

ρ′(s)

ρ(s)
−

p(s)

r(s)

)
∣

∣

∣

∣

,
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then Eq. (1.1) is oscillatory.

Proof. Suppose, towards a contradiction, that u(t) is a nonoscillatory solu-
tion of Eq. (1.1), say, u(t) 6= 0 on [T0,∞) for some sufficiently large T0 > t0.

Define

w(t) = ρ(t)
r(t) |u′(t)|p−2

u′(t)

f(u(t))
, t > T0. (2.3)

Then differentiating (2.3) and making use of Eq. (1.1), assumptions (C1), (C2)
and (C3), we have

w′(t) = −a(t)ρ(t) +
e(t)

f(u(t))
ρ(t)− ρ(t)

g(t, u, u′)u′

f(u(t))

−ρ(t)r(t)
f ′(u(t))

f2(u(t))

∣

∣u′(t)
∣

∣

p
+

ρ′(t)

ρ(t)
w(t)

6 −a(t)ρ(t) +
e(t)

f(u(t))
ρ(t)− ρ(t)p(t)

|u′(t)|p−2
u′(t)

f(u(t))

−ρ(t)r(t)
f ′(u(t))

f2(u(t))

∣

∣u′(t)
∣

∣

p
+

ρ′(t)

ρ(t)
w(t)

6 −a(t)ρ(t) +
e(t)

f(u(t))
ρ(t)− γ (ρ(t)r(t))1/(1−p) |w(t)|p/(p−1)

+

(

ρ′(t)

ρ(t)
−

p(t)

r(t)

)

w(t). (2.4)

By the conditions of the theorem, we can choose ai, bi > T0 for i = 1, 2 such
that e(t) 6 0 on the interval I1 = [a1, b1] and u(t) > 0, or e(t) > 0 on the
interval I2 = [a2, b2] and u(t) < 0.

By (2.4),

w′(t) 6 −a(t)ρ(t)− γ (ρ(t)r(t))1/(1−p) |w(t)|p/(p−1)

+

(

ρ′(t)

ρ(t)
−

p(t)

r(t)

)

w(t). (2.5)

on both intervals I1 and I2.

On one hand, multiplying Hp (t, s) through (2.5) and integrating it (with t

replaced by s) over [ci, t) for t ∈ [ci, bi) , i = 1, 2, by using hypotheses (i) , (ii) ,
we have for s ∈ [ci, t)

t
∫

ci

Hp (t, s) a(s)ρ(s)ds 6 −

t
∫

ci

Hp (t, s)w′(s)ds
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+

t
∫

ci

Hp (t, s)

[(

ρ′(s)

ρ(s)
−

p(s)

r(s)

)

w(s)− γ (ρ(s)r(s))1/(1−p) |w(s)|p/(p−1)

]

ds

= Hp (t, ci)w(ci)−

t
∫

ci

pHp−1 (t, s) h2(t, s)
√

H(t, s)w(s)ds

+

t
∫

ci

Hp (t, s)

[(

ρ′(s)

ρ(s)
−

p(s)

r(s)

)

w(s)− γ (ρ(s)r(s))1/(1−p) |w(s)|p/(p−1)

]

ds

6 Hp (t, ci)w(ci) +

t
∫

ci

[Hp−1 (t, s)H2(t, s) |w(s)|

−γHp (t, s) (ρ(s)r(s))1/(1−p) |w(s)|p/(p−1)]ds. (2.6)

Given t and s, set

F (v) := Hp−1H2v − γHp (ρr)1/(1−p) vp/(p−1),

where v > 0.
Since

F ′(v) = Hp−1H2 −
γp

p− 1
Hp (ρr)1/(1−p) v1/(p−1),

F (v) attains the maximum value at

v = rρ

(

(p− 1)H2

γpH

)p−1

,

and since

F (v) 6 Fmax = ΦrρHp
2 , (2.7)

we get, using (2.7),

t
∫

ci

Hp (bi, s) a(s)ρ(s)ds 6 Hp (bi, ci)w(ci)

+Φ

bi
∫

ci

r(s)ρ(s)Hp
2 (bi, s) ds. (2.8)
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Letting t → b−i in (2.6) , we obtain

bi
∫

ci

Hp (t, s) a(s)ρ(s)ds 6 Hp (t, ci)w(ci) + Φ

t
∫

ci

r(s)ρ(s)Hp
2 (t, s) ds. (2.9)

On the other hand, multiplying again by Hp both parts of (2.5), and inte-
grating (with t replaced by s) over (t, ci] for t ∈ (ai, ci] , i = 1, 2, instead, by
using hypotheses (i)–(ii), we yield for s ∈ (t, ci]

ci
∫

t

Hp (s, t) a(s)ρ(s)ds 6 −

ci
∫

t

Hp (s, t)w′(s)ds

+

ci
∫

t

Hp (s, t)

[(

ρ′(s)

ρ(s)
−

p(s)

r(s)

)

w(s)− γ (ρ(s)r(s))1/(1−p) |w(s)|p/(p−1)

]

ds

= −Hp (ci, t)w(ci) +

ci
∫

t

pHp−1 (s, t)h1(s, t)
√

H(s, t)w(s)ds

+

ci
∫

t

Hp (s, t)

[(

ρ′(s)

ρ(s)
−

p(s)

r(s)

)

w(s)− γ (ρ(s)r(s))1/(1−p) |w(s)|p/(p−1)

]

ds

6 −Hp (ci, t)w(ci) +

ci
∫

t

[Hp−1 (s, t)H1(s, t) |w(s)|

−γHp (s, t) (ρ(s)r(s))1/(1−p) |w(s)|p/(p−1)]ds

6 −Hp (ci, t)w(ci) + Φ

ci
∫

t

r(s)ρ(s)Hp
1 (s, t) ds. (2.10)

We get the last inequality in (2.10) by following the proof of (2.8). Letting
t → a+i in (2.10) leads to

ci
∫

ai

Hp (s, ai) a(s)ρ(s)ds 6 −Hp (ci, ai)w(ci)

+Φ

ci
∫

ai

r(s)ρ(s)Hp
1 (s, ai) ds. (2.11)
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Finally, dividing (2.9) and (2.11) by Hp (bi, ci) and Hp (ci, ai) , respectively, and
then adding them, we obtain the inequality

1

Hp(ci, ai)

ci
∫

ai

Hp (s, ai) a(s)ρ(s)ds +
1

Hp(bi, ci)

bi
∫

ci

Hp (bi, s) a(s)ρ(s)ds

6
1

Hp(ci, ai)
Φ

ci
∫

ai

r(s)ρ(s)Hp
1 (s, ai) ds

+
1

Hp(bi, ci)
Φ

bi
∫

ci

H
p
2 (bi, s) a(s)ρ(s)ds, (2.12)

which contradict (2.2). The proof of Theorem 2.1 is completed.

The following result is an easy corollary of Theorem 2.1.

Corollary 2.2. Suppose that the hypotheses in Theorem 2.1 hold and a

function H(t, s) satisfies the conditions (i)–(ii). If there exist some ci ∈ (ai, bi),
i = 1, 2, and some positive function ρ ∈ C1 ([t0,∞) ,R) such that

ci
∫

ai

[Hp (s, ai) a(s)ρ(s)− Φ r(s)ρ(s)Hp
1 (s, ai)] ds > 0 (2.13)

bi
∫

ci

[Hp (bi, s) a(s)ρ(s)− Φ r(s)ρ(s)Hp
2 (bi, s)] ds > 0 (2.14)

for i = 1, 2, where γ, H1, H2, Φ are similar to ones in Theorem 2.1, then Eq.

(1.1) is oscillatory.

Specifically, if a function H := H(t, s) ∈ C(D,R) which satisfies (i)–(ii) is
such that the following additional condition

(iii) h1(t− s) = h2(t− s),

is true for H. Then denoting hk(t− s) where k = 1, 2 by h(t− s), and assuming
that ρ(t) ≡ 1, we derive one more useful corollary from Theorem 2.1:
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Corollary 2.3. Suppose that for any T > t0, there exist T 6 a1 <

2c1 − a1 6 a2 < 2c2 − a2 such that

e(t)

{

6 0, t ∈ [a1, 2c1 − a1]
> 0, t ∈ [a2, 2c2 − a2 ]

}

. (2.15)

If there exists a function H := H(t − s) having the form described above and

satisfying the inequality

ci
∫

ai

Hp (s− ai) [a(s) + a(2ci − s)] ds

> Φ

∫ ci

ai

[r(s) + r(2ci − s)]
(

h (s− ai)
√

H(s − ai)
)p

ds, (2.16)

for i = 1, 2 and γ, and if all other hypotheses listed in Theorem 2.1 are true,

then Eq. (1.1) is oscillatory.

The proof of the corollary is similar to the proof of Theorem 2.2 in [4], so
we skip it.

Remark 2.4. It can be verified that we can replace the hypothesis con-
cerning the function e in Theorem 2.1 with the hypothesis

e(t)

{

> 0, t ∈ [a1, b1]
6 0, t ∈ [a2, b2 ]

}

.

3. f(x) is not Monotone Increasing

In this section, we shall mainly consider the oscillation problem for Eq. (1.1),
assuming as before the conditions (C1) and (C2) and the condition stating that

(C4) f(x) satisfies

f(x)

x
> K |x|q−2 ,

for x 6= 0, where K > 0 and q > 1 be constant.
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Lemma 3.1 (Hölder’s inequality). If A and B are nonnegative real num-

bers, then
1

p
Ap +

1

q
Bq

> AB, for
1

p
+

1

q
= 1.

Theorem 3.2. Suppose the conditions (C1), (C2), (C3), and (C4) are all

true for the function

f(x) = |x(t)|p−2x(t)

and that for any T > t0, there exist T 6 a1 < b1 6 a2 < b2 such that (2.1)
holds and a(t) > 0 for t ∈ [a1, b1] ∪ [a2, b2] .

If there exist some ci ∈ (ai, bi) for i = 1, 2, H(t, s) satisfying (i)–(ii) and a

positive function ρ ∈ C1 ([t0,∞) ,R) such that

1

Hp(ci, ai)

ci
∫

ai

[Hp (s, ai)Q(s)ρ(s)− Φr(s)ρ(s)Hp
1 (s, ai)] ds

+
1

Hp(bi, ci)

bi
∫

ci

[Hp (bi, s)Q(s)ρ(s)− Φr(s)ρ(s)Hp
2 (bi, s)] ds > 0 (3.1)

for i = 1, 2, where H1,H2, Φ are defined as in Theorem 2.1 and Q(t) =

[Ka(t)]p/q |e(t)|(q−p)/q
, then Eq. (1.1) is oscillatory.

Proof. Suppose otherwise: let u(t) be a nonoscillatory solution of Eq. (1.1),
say u(t) 6= 0 on [T0,∞) for some sufficiently large T0 > t0. Define

v(t) = ρ(t)
r(t) |u′(t)|p−2

u′(t)

|u(t)|p−2 u(t)
, t > T0. (3.2)

Then differentiating (3.2) and making use of Eq. (1.1) and assumptions
(C3)–(C4), we obtain

v′(t) =
e(t)

|u(t)|p−2 u(t)
ρ(t)− ρ(t)

g(t, u, u′)u′

|u(t)|p−2 u(t)
− ρ(t)

a(t)f(u)

|u(t)|p−2 u(t)

−(p− 1)ρ(t)r(t)
|u′(t)|p

|u(t)|p
+

ρ′(t)

ρ(t)
v(t)

6
e(t)

|u(t)|p−2 u(t)
ρ(t) +

(

ρ′(t)

ρ(t)
−

p(t)

r(t)

)

v(t)
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−Kρ(t)a(t) |u(t)|q−p − (p− 1)ρ(t)r(t)
|u′(t)|p

|u(t)|p

6 −ρ(t)

(

−
e(t)

|u(t)|p−2 u(t)
+Ka(t) |u(t)|q−p

)

−(p− 1) [ρ(t)r(t)]1/(1−p) |v(t)|p/(p−1) +

(

ρ′(t)

ρ(t)
−

p(t)

r(t)

)

v(t). (3.3)

By the hypotheses, we can choose ai, bi > 0 for i = 1, 2 such that e(t) 6 0
on the interval I1 = [a1, b1] with a1 < b1 and u(t) > 0; or e(t) > 0 on the
interval I2 = [a2, b2] with a2 < b2 and u(t) < 0. Thus, by Hölder’s inequality,
we have

−
e(t)

|u(t)|p−2 u(t)
+Ka(t) |u(t)|q−p =

|e(t)|

|u(t)|p−1 +Ka(t) |u(t)|q−p

>
q − p

q

[

|e(t)|(q−p)/q

|u(t)|(p−1)(q−p)/q

]q/(q−p)

+
p

q

[

(Ka(t))p/q u(p−1)(q−p)/q
]q/p

> Q(t) (3.4)

on the interval I1 = [a1, b1] . Similarly,

−
e(t)

|u(t)|p−2 u(t)
+Ka(t) |u(t)|q−p =

|e(t)|

|u(t)|p−1 +Ka(t) |u(t)|q−p

>

[

Ka(t)p/qe(t)(q−p)/q
]

= Q(t). (3.5)

on the interval I2 = [a2, b2] .

It follows from (3.4), (3.5), and (3.3) that the function v(t) satisfies

v′(t) 6 −ρ(t)Q(t)− (p− 1) [ρ(t)r(t)]1/(1−p) |v(t)|p/(p−1)

+

(

ρ′(t)

ρ(t)
−

p(t)

r(t)

)

v(t). (3.6)

on both intervals I1 and I2.

The rest of the proof is similar to that of Theorem 2.1 and hence omitted.

The following two corollaries are similar to Corollaries 2.2–2.3.
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Corollary 3.3. Suppose that all hypotheses in Theorem 3.2 hold and

H(t, s) is a function satisfying the conditions (i)–(ii).

If there exist some ci ∈ (ai, bi) , i = 1, 2, and some positive function ρ ∈
C1 ([t0,∞) ,R) such that

ci
∫

ai

[Hp (s, ai)Q(s)ρ(s)− Φr(s)ρ(s)Hp
1 (s, ai)] ds > 0 (3.7)

bi
∫

c
i

[Hp (bi, s)Q(s)ρ(s)− Φr(s)ρ(s)Hp
2 (bi, s)] ds > 0 (3.8)

for i = 1, 2, where γ, H1, H2, and Φ are similar to that ones in Theorem 3.2,

then Eq. (1.1) is oscillatory.

The second corollary is an analog of Corollary 2.3.

Corollary 3.4. Suppose that for any T > t0, there exist T 6 a1 <

2c1 − a1 6 a2 < 2c2 − a2 such that (2.15) holds for the function e, and ρ ≡ 1.

If there exists a function H := H(t − s) satisfying the conditions (i)–(iii)
such that

ci
∫

ai

Hp (s− ai) [Q(s) +Q(2ci − s)] ds

> Φ

∫ ci

ai

[r(s) + r(2ci − s)]
(

h (s− ai)
√

H(s− ai)
)p

ds, (3.9)

for i = 1, 2, then Eq. (1.1) is oscillatory.

Remark 3.5. Likewise, we can replace the condition (2.15) in for the
function e in Corollary 2.3 to the condition in Remark 2.4.
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