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Abstract: In this work we consider the Frank kinetic model [7] recently
studied by Gutman [10] in a framework where the resources are limited. The
model consists of a nonlinear system of differential equations for which we
propose an alternative solution through the Adomian decomposition method
(ADM).
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1. Introduction

Most of the dynamic phenomena arising in nature are described by nonlinear
differential equations (ordinary or partial) and in some cases by integral equa-
tions. However, most of the methods developed in mathematics are used to
solve linear differential equations. In general, the decomposition method devel-
oped by the mathematician George Adomian (1923-1996), has been very useful
in applied mathematics [12], [13]. The Adomian decomposition method (ADM)
has the advantage that it converges to the exact solution in a vast majority of
very important cases in applications and can be handled easily for a wide class
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of differential equations (ordinary and partial) both linear and nonlinear sys-
tems of differential equations. In this paper we will use the ADM to specifically
solve the system of nonlinear differential equations resulting from the kinetic
Frank model [7] that has been extensively studied and analyzed by Gutman in
[10] and [8].

2. The Frank Kinetic Model

All living organisms contain (optically active) chiral molecules and only a se-
ries of enantiomers is present. Specifically, biochemical processes in all living
organisms involve L-amino acids and D-sugars; with a total absence of their
counterparts (in a mirror image), that is, D-amino acids and L-Sugars. Fur-
thermore, when living organisms and their products (particularly enzymes) are
excluded, then chiral substances are formed as racemic mixtures containing
equal amounts of both enantiomeric forms; this stereochemical difference be-
tween living and nonliving matter has puzzled scientists since the time of Louis
Pasteur [11].

In 1953, Frank [7] proposed a model using the law of mass action that
consists of the following chemical reactions:

A+R 25 oR,
A+S 25 9s. (1)

In (1) a pair of enantiomers R and S are produced in an autocatalytic
process in which A is an achiral reactant. Enantiomers R and S are eliminated
each other resulting in an inactive product:

R+S 13 products. (2)

Mathematically, assuming that enantiomers are time-dependent R = R(t),
S = S(t) and the achiral reactant A as a constant a, we have that the Frank
model is expressed in the following system of nonlinear differential equations:

dR
E = leLR - :ICQRS,
ds
= kiaS — ko RS. (3)

dt
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3. Adomian Decomposition Method

The ADM method allows to find an analytical solution for an ordinary differ-
ential equation or an equation in partial derivatives, [4]. The method consists
of identifying in the differential equation, the linear and the nonlinear parts,
then inverting the differential operator of higher order of the linear part, and
considering the unknown function as a series whose terms will be determined
through ADM; in the next step, the nonlinear part is decomposed in terms of
Adomian polynomials, [3]. We define the initial and/or boundary conditions
and the terms involving the independent variable as the first approach. Thus,
the unknown terms of the series can be found through recursive relationships.
In general, the method is the following: given a differential equation (ordi-

nary or partial)
Fu(z,t) = g(z,t) (4)

with initial condition

u(z,0) = f(x), (5)
where F represents a linear combination of differential operators involving both
the linear, nonlinear terms and then equation (4) can be written as

Liu(z,t) + Ru(x,t) + Nu(z,t) = g(x, 1), (6)

where L; = %, R is a linear operator involving derivatives (ordinary or partial)
with respect to x and N is a nonlinear operator; ¢ is a non-homogeneous term
independent of wu.

From equation (6), we have

Lyu(z,t) = g(x,t) — Ru(x,t) — Nu(x,t). (7)
Since L is invertible, acting on (7) with the inverse L; !(-) = f(f (-)ds, we obtain
Ly 'Lyu(x,t) = L 'g(x,t) — Ly "Ru(x,t) — Ly ' Nu(z, t) (8)

and thus, an equivalent expression to equation (8) is
u(z,t) = f(x) + L g(x,t) — Ly *Ru(z,t) — Ly 'Nu(x, t), 9)

where f(x) is the constant of integration (with respect to ¢) such that L;f = 0.
The ADM method [4], decomposes the solution of (4), (5) into a series given by

u(z,t) = Zun(x,t). (10)
n=0
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The non-linear term Nu(z,t) decomposes in turn as

t) = ZAn(u07u17"‘7u”)’ (11)
n=0

where {4,}°°, is the so called Adomian polynomials sequence see, e.g [1] and

[2].

Replacing now equations (10), (11) into (9), we find

iun(:r,t): (2) + L g(z,t) — 1RZunaﬁt ;1§:An, (12)
n=0 n=0

from where the recursive algorithm can be obtained, for every n =0,1,2...

Upt1(z,t) = Lt_lRun(x,t) - Lt_lAn(uo,ul, cey Up).

With the algorithm (13) we can obtain an approximate solution of (4), (5)
through the series

k

k
t) ~ Zun(:c,t), with lerI;OZun(x,t) = u(z,t). (14)
n=0 n=0

The series decomposition of the solution usually converges faster. Because of
this, only a few terms are required to analyze. The conditions for which the
method converges have been studied in the work [5], [6], [1] and mainly [2]. In
the case of systems of differential equations, each of the dependent variables are
recursively obtained with (13) and the approach to the solutions in each case
with (14).

In the next section we consider the ADM to decompose a system of nonlinear
ordinary differential equations and propose an example to compare the goodness
of the method with the exact solution.

4. Decomposition of the Frank’s Model

To solve the system (3) with A a constant through the ADM method, we assume
that k1a = a3 # 0 and k2 = ag # 0 and thus (3) can be rewritten as

dR

E = CLlR - CLQRS,

ds

—_ = a15 - CLQRS, (15)

dt
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then defining 7 = ait, u(r) = ZR(t), v(r) = 25(t), B = %, the system of

equations (15) becomes the non-linear system of differential equations

du_ U — U

dr

do v — Buw (16)
dr

with initial conditions u(0) = wug, v(0) = vg. To find the solutions u and v
satisfying (16), we use the ADM to obtain

T) = Zun(T)v v(T) = Zvn(T)v (17)
n=0 n=0

where, according to (13), if n > 0 we find the recursive solution

Uy (7) = /0 (U — Avon)ds, vns1(r) = /0 (vn — BAs1)ds,  (18)

and

n n
Aton =Y Wtn—k, Azin = Uklin_ (19)
k=0 k=0

Example 1. As an example of using the ADM method through (18) and
(19) consider ky = 1/2, ko = 1, a = 2 and thus 5 = 1 in (3) as well as the initial
conditions ug = 2 and vg = 1 (up > vg). With these data we have:

ALQ’O(t) =2
. A27170(t) =2
(for n =0) w(t) =0 (20)
Ul(t) = —t
A17271(t) =2
(forn =1) 2122(’1’)1 (_t)_:2t1 - (21)
va(t) =L — ¢
A129(t) =12 — 4t
Ag1a(t) =2 —
(for n = 2) (22)

ug(t) = -2 + t2
vg(t) = —t3 + 3¢
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(Ayog(t) = —3t3 +4t2 — 2t
Ag13(t) = —2t3 + 612
(for n = 3) () ’ (23)
ug(t) = St — 3+ 12
_ 144 343
Aipa(t) = =33+ 412 — 2¢
Agqa(t) = —3t3 4 6t°
(for n = 4) 1a(t) . (24)
[ vs5(t) = —755t° + 514 — 387

With these we can do the approach to fifth order as 7 = a1t = kjat = t,
and get

4 7
a2 —2t+2t2 o3 4 ¢t 45 25
u(t) + + ot = a5t (25)
7 13
~1—2+212 — 3t - 0, 2
(t) b+ 27— ot b - oot (26)

In Table 1 we show the results obtained with the ADM method and com-
paring with those exact values of r(¢) and s(t) for (3) obtained in [10], that,
considering a as a constant are given by

r(t) = ro(ro — so)(ro — soF) M1,

s(t) = so(ro — so)F(ro — soF)_leklat,

where F, after a small correction relative to its value obtained in [10], is given
by
k
F(t) = exp (= = (rg - so)[eM — 1]).
kla
As we see from Table 1, the absolute difference between these variables is
about 2 x 107°.
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time ¢ | u(t) v(t) | r(t) exact | s(t) exact
0.0 2.00000 | 1.00000 2.00000 1.00000
0.1 1.81813 | 0.81776 1.81815 0.81778
0.2 1.66617 | 0.66289 1.66619 0.66291
0.3 1.53652 | 0.52483 1.53654 0.52485
0.4 1.42494 | 0.48568 1.42496 0.48570
0.5 1.32969 | 0.44434 1.32971 0.44436
0.6 1.25173 | 0.40329 1.25175 0.40330
0.7 1.19453 | 0.39515 1.19455 0.39517
0.8 1.16399 | 0.26744 1.16401 0.26746
0.9 1.16791 | 0.13717 1.16793 0.13719
1.0 1.21667 | 0.00155 1.21669 0.00157

Table 1: The exact values [10] and the ADM values in ¢ € [0, 1].

5. Summary

In this work the Adomian decomposition method has been implemented to solve
the version of the Frank kinetic model in which the amount of achiral reactant A
remains constant. The approximation by Adomian polynomials of fifth degree,
gives an approximation of the amount of enantiomers with an error of order
2 x 107°. Moreover, in Table 1 we compare with the results of [9] concerning
the enantiomeric excess of ee when ¢ — o0o. Our approach is consistent since
with A constant ee — 1 when ¢t — co.

We have used the Mathematica package has been used to calculate the
decomposition series.
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