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Abstract: In this paper, an SEIR epidemic model with waning preventive
vaccine is investigated. The results of our mathematical analysis indicate that
the dynamics of the system is almost determined by the basic reproduction
number. If the basic reproduction number is less than unity, it is proven that
the disease-free equilibrium is globally asymptotically stable by comparison
arguments. If it is greater than unity, there exists a unique endemic equilibrium
and sufficient conditions are obtained for the global stability of the endemic
equilibrium by the theory of the compound matrices. Numerical simulations
are carried out to illustrate the main results.
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1. Introduction

Over the past few decades, many compartmental mathematical models, such
as SIS, SIR or SIRS (where S, I, and R denote the populations of susceptible,
infectious and recovered), have been used to investigate the spread of the disease
(see, for instance, [2, 11, 14] and the the references therein). In these studies,
it was assumed that the disease incubation is negligible. However, for some
diseases, such as scarlet fever, poliomyelitis and AIDS, on adequate contact
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with an infective, a susceptible individual becomes exposed, that is, infected
but not infective. This individual remains in the exposed class for a certain
latent period before becoming infective. Hence, a new class E called the exposed
class is introduced, in which the susceptible remains for a given length of time
before moving into the infective class. This kind of model is called SEIR (see,
for instance, [7, 9] and the the references therein).

Emerging infectious diseases have devastating impacts on public health. So
it is important to evaluate potential methods for controlling these diseases.
Vaccination is a commonly used method for controlling disease, such as per-
tussis, diphtheria, or influenza. Mathematical models including vaccination aid
in deciding on a vaccination strategy and in determining changes in qualita-
tive behavior that could result from such a control measure(see, for instance,
[5, 6, 15] and the reference therein). In [1], Gumel et al. considered the following
infectious disease model:

Ṡ(t) = Π− βSI − ξS − µS, (1.1a)

V̇ (t) = ξS − (1− τ)βV I − µV, (1.1b)

Ė(t) = βSI + (1− τ)βV I − αE − µE, (1.1c)

İ(t) = αE − δI − dI − µI, (1.1d)

Ṙ(t) = δI − µR, (1.1e)

where the total population N is divided into five compartments: susceptible,
S(t), vaccinated, V (t), latently infected, E(t), infectious, I(t) and recovered,
R(t), individuals. In (1.1a) − (1.1e), the parameters Π, β, ξ, µ, α, δ and d are
positive constants. Π denotes the recruitment rate of susceptible humans, µ de-
notes the natural mortality rate, β denotes the effective contact rate, ξ denotes
the vaccination coverage rate, α denotes the rate of development of clinical
symptoms, δ denotes the recovery rate, d denotes the disease-induced mortality
rate. 0 ≤ τ ≤ 1 denotes the vaccine efficacy(τ = 1 represents a vaccine that
offers 100% protection against infection, τ = 0 models a vaccine that offers no
protection at all). However, some recent clinical studies have shown vaccine-
induced immunity can wane in preventive vaccines against infectious diseases
such as Hepatitis B, Polio and Mumps. Once a vaccine wanes from the body
of the vaccinated person, the person becomes susceptible to the disease again.

Motivated by the work of Gumel et al.[1], we are concerned with the fol-
lowing infectious disease model with a waning preventive vaccine:



GLOBAL DYNAMICS OF AN SEIR EPIDEMIC... 131

Ṡ(t) = Π− βSI − ξS − µS + ηV, (1.2a)

V̇ (t) = ξS − (1− τ)βV I − µV − ηV, (1.2b)

Ė(t) = βSI + (1− τ)βV I − αE − µE, (1.2c)

İ(t) = αE − δI − dI − µI, (1.2d)

Ṙ(t) = δI − µR, (1.2e)

where η is the rate at which vaccine wanes (that is 1/η is the duration of the loss
of immunity acquired by preventive vaccine or by infection), and the meanings
of the other parameters are the same as those of the model (1.1a) − (1.1e).

The initial conditions for the model (1.2a) − (1.2e) take the form

S(0) > 0, V (0) > 0, E(0) > 0, I(0) > 0, R(0) > 0. (1.3)

Notice that the recovered population R(t) does not feature in the first four
equations of the model, we will only discuss Equations (1.2a) − (1.2d) in the
following. The dynamic behaviors of R(t) can be obtained from equation (1.2e).

The paper is organized as follows. In the next section, the ultimate bound-
edness of the solutions for the model (1.2a)− (1.2d) is presented. In Section 3,
by analyzing the corresponding characteristic equations, the local stability of a
disease free equilibrium and an endemic equilibrium of the model (1.2a)−(1.2d)
is discussed. In Section 4, by using comparison arguments and the theory of
compound matrices, sufficient conditions are received for the global asymptotic
stability of the disease free equilibrium and the endemic equilibrium, respec-
tively. Numerical simulations are carried out in Section 5 to illustrate the main
theoretical results. A brief discussion is given in Section 6 to conclude this
work.

2. Preliminary Results

In this section, we study the basic properties of the model (1.2a) − (1.2d).

By the fundamental theory of functional differential equations [4], it is well
known that the model (1.2a)−(1.2d) has a unique solution (S(t), V (t), E(t), I(t))
satisfying initial conditions in R+

4 . Further, it is easy to show that all solutions
of the model (1.2a) − (1.2d) are defined on [0,+∞).
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Theorem 2.1. For any solution (S(t), V (t), E(t), I(t)) of the model (1.2a)−
(1.2d), we have

lim sup
t→+∞

S(t) ≤
Π(µ + η)

µ(ξ + µ+ η)
, lim sup

t→+∞
V (t) ≤

ξΠ

µ(µ+ ξ + η)
,

lim sup
t→+∞

E(t) ≤
Π

µ
, lim sup

t→+∞
I(t) ≤

Π

µ
.

Proof. Define

L(t) = S(t) + V (t) + E(t) + I(t).

Calculating the derivative of L(t) along the solutions of the model (1.2a) −
(1.2d), it follows that

L̇(t) = Π− µL− dI − δI ≤ Π− µL,

a standard comparison argument shows that lim sup
t→+∞

L(t) ≤ Π/µ. Hence,

lim sup
t→+∞

E(t) ≤
Π

µ
, lim sup

t→+∞
I(t) ≤

Π

µ
.

By equations (1.2a) − (1.2b), we get

Ṡ(t) ≤ Π− (ξ + µ)S + ηV,

V̇ (t) ≤ ξS − (µ+ η)V.

Consider the following auxiliary system

ż1(t) = Π− (ξ + µ)z1 + ηz2,

ż2(t) = ξz1 − (µ+ η)z2.
(2.1)

It is easy to prove that the positive equilibrium

z∗(Π(µ + η)/(µ(ξ + µ+ η)), ξΠ/(µ(µ + ξ + η))

of system (2.1) is globally asymptotically stable. By comparison, it follows that

lim sup
t→+∞

S(t) ≤
Π(µ+ η)

µ(ξ + µ+ η)
, lim sup

t→+∞
V (t) ≤

ξΠ

µ(µ+ ξ + η)
. (2.2)

This completes the proof.



GLOBAL DYNAMICS OF AN SEIR EPIDEMIC... 133

Denote

D=

{

(S, V,E, I)∈R4
+0:S+V+E+I≤

Π

µ
,S≤

Π(µ+η)

µ(ξ+µ+η)
,V≤

ξΠ

µ(ξ+µ+η)

}

.

Theorem 2.1 implies that the set D is a positively invariant and the attracting
region for the disease transmission model given by the model (1.2a) − (1.2d)
with initial conditions in R4

+.

3. Equilibria and Local Stability

In this section, we study the local stability of a disease-free equilibrium and an
endemic equilibrium of the model (1.2a)−(1.2d) by analyzing the corresponding
characteristic equations, respectively.

The model (1.2a) − (1.2d) always has a disease-free equilibrium

P0 = (S0, V0, E0, I0) = (Π(µ + η)/(µ(ξ + µ+ η)), ξΠ/(µ(ξ + µ+ η)), 0, 0).

Following the method of next generation matrix by van den Driessche and
Watmough [12], one obtains the basic reproduction number for the model
(1.2a) − (1.2d) as

R0 =
αβΠ(µ + (1− τ)ξ + η)

µ(α+ µ)(ξ + µ+ η)(δ + µ+ d)
.

The basic reproduction number R0 is defined as the expected number of sec-
ondary cases produced in an entirely susceptible population by a typical infected
individual during its entire infectious period [12].

To calculate the endemic equilibrium P ∗(S∗, V ∗, E∗, I∗), we solve

Π− βS∗I∗ − ξS∗ − µS∗ + ηV ∗ = 0, (3.1a)

ξS∗ − (1− τ)βV ∗I∗ − µV ∗ − ηV ∗ = 0, (3.1b)

βS∗I∗ + (1− τ)βV ∗I∗ − αE∗ − µE∗ = 0, (3.1c)

αE∗ − δI∗ − dI∗ − µI∗ = 0. (3.1d)

From equations (3.1a), (3.1b) and (3.1d), we get

S∗ =
Π+ ηV ∗

βI∗ + ξ + µ
, V ∗ =

ξS∗

(1− τ)βI∗ + µ+ η
,E∗ =

µ+ δ + d

α
I∗. (3.2)

Equation (3.1c) yields

E∗ =
βS∗I∗ + (1− τ)βV ∗I∗

α+ µ
. (3.3)
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Substituting the expressions of S∗, V ∗, E∗ in equation (3.2) into equation
(3.3), which gives

Q(I∗) = AI∗2 +BI∗ + C = 0, (3.4)

where

A = (1− τ)β2,

B = β(µ+η)

[

1+
µ(1−τ)(ξ+µ+η)

(µ+η)(µ+η+(1− τ)ξ)

(

1−R0+
ξ((1−τ)(µ+ξ)+η)

µ(ξ+µ+η)

)]

,

C = µ(ξ + µ+ η)(1 −R0).

(3.5)

The endemic equilibrium of the model (1.2a)− (1.2d) are given by equation
(3.2) with the positive root I∗ of equation (3.4). Let I∗1 , I

∗
2 be the roots of

equation (3.4), and the conditions for equation (3.4) to have positive roots are
determined below.

Suppose 0 ≤ τ < 1, then A > 0. If R0 > 1, C < 0. Then Equation (3.4)
has a unique positive root for I∗1I

∗
2 = C/A < 0. If R0 = 1, B > 0, C = 0. Here,

Q(I) = I(AI + B), with I∗1 = 0, I∗2 = −B/A < 0. Hence, equation (3.4) has
no positive root. If R0 < 1, A > 0, B > 0, C > 0. Thus, equation (3.4) has no
positive root.

Suppose τ = 1, then A = 0, B = β(µ+ η). Hence, Q(I) = BI+C, with the
root I = −C/B. If R0 > 1, C < 0. Then equation (3.4) has a unique positive
root. If R0 ≤ 1, C ≥ 0. Then equation (3.4) has no positive root.

In conclusion, we have the following results.

Theorem 3.1. The model (1.2a)−(1.2d) has a unique endemic equilibrium
P ∗(S∗, V ∗, E∗, I∗) when R0 > 1 and no endemic equilibrium when R0 ≤ 1.

Now we study the local stability of the disease-free equilibrium P0 and the
endemic equilibrium P ∗.

The characteristic equation of the model (1.2a)− (1.2d) at the equilibrium
P0 is of the form

(λ+µ)(λ+ξ+µ+η)[λ2+(α+2µ+δ+d)λ+(α+µ)(δ+d+µ)(1−R0)]=0. (3.6)

Clearly, equation (3.6) always has two negative real roots λ1 = −µ, λ2 =
−ξ − µ − η. The other roots λ3, λ4 of Equation (3.6) are determined by the
following equation

λ2 + (α+ 2µ+ δ + d)λ+ (α+ µ)(δ + d+ µ)(1−R0) = 0. (3.7)
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If R0 > 1, λ3λ4 < 0, then equation (3.7) has one positive real part root. Hence,
P0 is unstable. If R0 < 1, λ3 + λ4 < 0, λ3λ4 > 0, then the characteristic roots
of equation (3.7) have negative real parts. Hence, P0 is locally asymptotically
stable.

By Theorem 3.1, the model (1.2a)−(1.2d) has a unique endemic equilibrium
P ∗ when R0 > 1. The characteristic equation of the model (1.2a) − (1.2d) at
the equilibrium P ∗ takes the form

λ4 + a1λ
3 + a2λ

2 + a3λ+ a4 = 0, (3.8)

where

a1 =δ + d+ α+ ξ + 4µ + η + (2− τ)βI∗,

a2 =(βI∗ + µ)(µ + η + (1− τ)βI∗) + ξ(µ+ (1− τ)βI∗)

+ (α+ 2µ + δ + d)(ξ + 2µ+ η + (2− τ)βI∗),

a3 =(α+2µ+δ+d)((βI∗+µ)((1−τ)βI∗+µ+η)+ξ((1−τ)βI∗+µ))

+ (α+ µ)(δ + d+ µ)(1− τ)βI∗ + ατβ2S∗I∗,

a4 =(α+µ)(δ+d+µ)((1−τ)βI∗(βI∗+ξ)+βI∗((1−τ)µ+η))+αµτβ2SI.

By calculation,

∆1 =a1 = δ + d+ α+ ξ + 4µ+ η + (2− τ)βI∗ > 0,

∆2 =a1a2 − a3

=(α+ µ)(δ + d+ µ)(ξ + 2µ+ η) + α(1− τ)β2I∗(S∗ + V ∗)

+[ξ+2µ+η+(2−τ)βI∗][(α+µ)2+(1−τ)βI∗(βI∗+ξ)+βI∗((1−τ)µ+η)

+µ(βI∗+µ+η+ξ)+(α+2µ+δ+d)(ξ+3µ+η+(2−τ)βI∗+δ+d)]>0,

∆3 =a3∆2 − a21a4

=H + (µ − α)[ηβI∗(δ + d+ µ)(τ(δ + d+ µ)(δ + d+ 2µ+ α)

+(1−τ)(α+µ)(µ+α+δ+d))+(1−τ)β2I∗2(δ+d)2(ξ+3µ+α+η+(2−τ)βI∗)],

∆4 =a4∆3,

where the expression ofH can be seen in Appendix. Since a4 > 0, by the Routh-
Hurwitz criterion, all characteristic roots of Equation (3.8) have negative real
parts for ∆3 > 0.

From what has been discussed above, we have the following results.

Theorem 3.2. For the model (1.2a) − (1.2d), we have the following:
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(1) If R0 < 1, then the disease-free equilibrium P0 is locally asymptotically
stable; if R0 > 1, P0 is unstable.

(2) If R0 > 1 and ∆3 > 0, then the unique positive endemic equilibrium P ∗

is locally asymptotically stable.

From the proof of Theorem 3.2, one can get the following result.

Corollary 3.1. If R0 > 1 and µ > α, then the positive endemic equilib-
rium P ∗ is locally asymptotically stable.

4. Global Stability

In this section, we study the global stability of the disease-free equilibrium P0

and the endemic equilibrium P ∗ of the model (1.2a) − (1.2d), respectively.

Theorem 4.1. The disease-free equilibrium P0 is globally asymptotically
stable if R0 < 1.

Proof. Let (S(t), V (t), E(t), I(t)) be any positive solution of the model
(1.2a) − (1.2d) with initial conditions in R+

4 .
Since R0 < 1, we can choose ε > 0 small enough such that

αβ(Π(µ + (1− τ)ξ + η) + (2− τ)εµ(ξ + µ+ η))

µ(α+ µ)(ξ + µ+ η)(δ + µ+ d)
< 1. (4.1)

By (2.2), for ε > 0 satisfying (4.1), there exists a T1 > 0 such that if t > T1,

S(t) ≤
Π(µ + η)

µ(ξ + µ+ η)
+ ε, V (t) ≤

ξΠ

µ(ξ + µ+ η)
+ ε.

From equation (1.2c), it is easy to know that if t > T1,

Ė(t)≤

(

β

(

Π(µ+η)

µ(µ+ξ+η)
+ε

)

+(1−τ)β

(

ξΠ

µ(ξ+µ+η)
+ε

))

I−(α+µ)E.

Consider the following auxiliary system

u̇1(t) =

(

β

(

Π(µ+η)

µ(ξ+µ+η)
+ε

)

+(1−τ)β

(

ξΠ

µ(ξ+µ+η)
+ε

))

u2−(α+µ)u1,

u̇2(t) =αu1 − (δ + d+ µ)u2.

(4.2)
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It is easy to prove that the equilibrium (0, 0) of system (4.2) is globally asymp-
totically stable for (4.1). By comparison, it follows that

lim
t→∞

E(t) = 0, lim
t→∞

I(t) = 0. (4.3)

Hence, for arbitrary ε > 0, there exists a T2 > 0 such that if t > T2, E(t) <
ε, I(t) < ε. From Equations (1.2a) − (1.2b), it is easy to know that if t > T2,

Ṡ(t) ≥Π− (βε+ ξ + µ)S + ηV,

V̇ (t) ≥ξS − ((1 − τ)βε+ µ+ η)V.

Consider the following auxiliary system

v̇1(t) =Π− (βε+ ξ + µ)v1 + ηv2,

v̇2(t) =ξv1 − ((1− τ)βε+ µ+ η)v2.
(4.4)

It is easy to prove that the positive equilibrium v∗(v∗1 , v
∗
2) of system (4.4) is

globally asymptotically stable, where

v∗1 =
Π((1− τ)βε + µ+ η)

(βε+ µ)((1− τ)βε+ µ+ η) + ξ((1− τ)βε+ µ)
,

v∗2 =
ξΠ

(βε+ µ)((1− τ)βε+ µ+ η) + ξ((1− τ)βε+ µ)
.

By comparison, it follows that

lim inf
t→+∞

S(t) ≥ v∗1 , lim inf
t→+∞

V (t) ≥ v∗2 . (4.5)

Since (4.5) holds for arbitrary ε > 0 sufficiently small, it follows that

lim inf
t→+∞

S(t) ≥
Π(µ+ η)

µ(ξ + µ+ η)
, lim inf

t→+∞
V (t) ≥

ξΠ

µ(ξ + µ+ η)
. (4.6)

By (4.6) and (2.2), it follows that

lim
t→∞

S(t) =
Π(µ+ η)

µ(ξ + µ+ η)
, lim

t→∞
V (t) =

ξΠ

µ(ξ + µ+ η)
. (4.7)

By (4.3) and (4.7), P0 is globally asymptotically stable when R0 < 1. The
proof is complete.
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In the following, the method developed in [8, 10] is used to discuss the
global stability of the endemic equilibrium P ∗. First, we introduce this method
briefly.

Let G ⊂ Rn be an open set. Consider the differential equation:

ẋ = f(x), (4.8)

where the function f : x → f(x) ∈ Rn, x ∈ G is continuous on G.

Denote E be an n × n matrix and E[2] be the second additive compound
matrix of E. Let Q(x) be a

(

n
2

)

×
(

n
2

)

matrix-valued function that is continuous
on G and consider

A = QfQ
−1 +QJ [2]Q−1,

where the matrix Qf is the derivative of Q in the direction of the vector field f in
system (4.8), and J [2] is the second additive compound matrix of the Jacobian
matrix of system (4.8). Consider the Lozinskǐi measure µ̄ of A with respect to

a vector norm in R

(

n
2

)

, that is

µ̄(A) = lim
h→0+

‖I + hA‖

h
.

Lemma 4.1. [10] If G1 is a compact absorbing subset in the interior of G,
and there exist γ > 0 and a Lozinskĭi measure µ̄(A) ≤ −γ for all x ∈ G1, then
every omega limit point of system (4.8) in the interior of G is an equilibrium
in G1.

The Lozinskǐi measure in Lemma 4.1 can be evaluated as [13]:

µ̄(A) = inf{k̄ : D+‖z‖ ≤ k̄‖z‖, for all solutions of z′ = Az}, (4.9)

where D+ is the right-hand derivative.

Next, we prove the global stability of the equilibrium P ∗ by Lemma 4.1.

Theorem 4.2. If R0 > 1, then the endemic equilibrium P ∗ is globally
asymptotically stable provided that:

u > max {α, η} . (4.10)

Proof. Let (S(t), V (t), E(t), I(t)) be any positive solution of the model
(1.2a) − (1.2d) with initial conditions in R+

4 . By Corollary 3.1, we see that
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the endemic equilibrium P ∗ is locally asymptotically stable provided R0 > 1
and u > max {α, η}.

The second additive compound matrix J [2] associated with the solution
(S(t), V (t), E(t), I(t)) is

J [2] = −diag

















βI + ξ + 2u+ (1− τ)βI + η
βI + ξ + 2u+ α

βI + ξ + 2u+ δ + d
(1− τ)βI + 2u+ α+ η

(1− τ)βI + 2u+ δ + d+ η
2u+ δ + d+ α

















+

















0 0 −(1−τ)βV 0 βS 0
(1−τ)βI 0 βS+(1−τ)βV η 0 βS

0 α 0 0 η 0
−βI ξ 0 0 βS+(1−τ)βV (1−τ)βV
0 0 ξ α 0 0
0 0 βI 0 (1−τ)βI 0

















.

Define

Q =

















1/E 0 0 0 0 0
0 1/E 0 0 0 0
0 0 0 1/E 0 0
0 0 1/I 0 0 0
0 0 0 0 1/I 0
0 0 0 0 0 1/I

















,

then

A = QfQ
−1 +QJ [2]Q−1

= −diag



















βI + (1− τ)βI + βSI+(1−τ)βV I

E
+ ξ + µ+ η − α

βI + βSI+(1−τ)βV I

E
+ ξ + µ

(1− τ)βI + βSI+(1−τ)βV I

E
+ µ+ η

βI + αE
I

+ ξ + µ

(1− τ)βI + αE
I

+ µ+ η
αE
I

+ µ+ α


















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+



















0 0 0 − (1−τ)βV I

E
βSI
E

0

(1−τ)βI 0 η βSI+(1−τ)βV I

E
0 βSI

E

−βI ξ 0 0 βSI+(1−τ)βV I

E

(1−τ)βV I

E

0 αE
I

0 0 η 0

0 0 αE
I

ξ 0 0
0 0 0 βI (1−τ)βI 0



















.

Define the norm on R6[1]:

‖z‖ = max{U1, U2},

where z ∈ R6 with component zi, i = 1, 2, · · · , 6, and

U1(z1,z2,z3)=























max{|z1|, |z2|+|z3|} if sgn(z1)=sgn(z2)=sgn(z3)

max{|z2|, |z1|+|z3|} if sgn(z1)=sgn(z2)=−sgn(z3)

max{|z1|, |z2|, |z3|} if sgn(z1)=−sgn(z2)=sgn(z3)

max{|z1|+|z3|, |z2|+|z3|} if−sgn(z1)=sgn(z2) =sgn(z3),

U2(z4,z5,z6)=























|z4|+|z5|+|z6| if sgn(z4)=sgn(z5)=sgn(z6)

max{|z4|+|z5|, |z4|+|z6|} if sgn(z4)=sgn(z5)=− sgn(z6)

max{|z5|, |z4|+|z6|} if sgn(z4)=− sgn(z5)=sgn(z6)

max{|z4|+|z6|, |z5|+|z6|} if− sgn(z4)=sgn(z5)=sgn(z6).

Clearly,
|z2| ≤ U1(z), |z3| ≤ U1(z), |z2 + z3| ≤ U1(z),

and

|zi| ≤ U2(z), |zi + zj | ≤ U2(z), |z4 + z5 + z6| ≤ U2(z), i = 4, 5, 6, i 6= j,

for all z = (z1, z2, z3, z4, z5, z6) ∈ R6.

Case 1: U1(z) > U2(z), sgn(z1) = sgn(z2) = sgn(z3) and |z1| > |z2| + |z3|.
Then ‖z‖ = |z1|, so that

D+‖z‖ =D+(|z1|)

≤

(

−βI− (1− τ)βI−
βSI+(1−τ)βV I

E
−ξ−µ−η+α

)

|z1|

+
(1− τ)βV I

E
|z4|+

βSI

E
|z5|.

Since |z4|, |z5| ≤ U2(z) < U1(z) ≤ |z1|, we have

D+‖z‖ ≤(α− ξ − µ− η)|z1|.
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Thus,
D+‖z‖ ≤ (α− ξ − µ− η)‖z‖. (4.11)

Case 2: U1(z) > U2(z), sgn(z1) = sgn(z2) = sgn(z3) and |z2| + |z3| > |z1|.
Then ‖z‖ = |z2|+ |z3|, so that

D+‖z‖ =D+(|z2|+ |z3|)

≤

(

−βI−
βSI+(1−τ)βV I

E
−µ

)

|z2|+
βSI+(1−τ)βV I

E
|z4+z5+z6|

+

(

−(1−τ)βI−
βSI+(1−τ)βV I

E
−µ

)

|z3| − τβI|z1|.

Since |z4 + z5 + z6| ≤ U2(z) < U1(z) ≤ |z2|+ |z3| and −τβI|z1| < 0, we have

D+‖z‖ ≤(−βI − µ)|z2|+ (−(1− τ)βI − µ)|z3| ≤ −µ(|z2|+ |z3|).

Thus,
D+‖z‖ ≤ −µ‖z‖. (4.12)

Case 3: U1(z) > U2(z), sgn(z1) = sgn(z2) = − sgn(z3) and |z2| > |z1|+ |z3|.
Then ‖z‖ = |z2|, so that

D+‖z‖ =D+(|z2|)

≤(1− τ)βI|z1|+

(

−βI −
βSI + (1− τ)βV I

E
− ξ − µ

)

|z2|

− η|z3|+
βSI

E
|z4 + z6|+

(1− τ)βV I

E
|z4|.

Since |z4|, |z4 + z6| ≤ U2(z) < U1(z) ≤ |z2|, |z1| < |z2| and −η|z3| < 0, we have

D+‖z‖ ≤(−τβI − ξ − µ)|z2| ≤ (−ξ − µ)|z2|.

Thus,
D+‖z‖ ≤ (−ξ − µ)‖z‖. (4.13)

Case 4: U1(z) > U2(z), sgn(z1) = sgn(z2) = − sgn(z3) and |z1|+ |z3| > |z2|.
Then ‖z‖ = |z1|+ |z3|, so that

D+‖z‖ =D+(|z1|+ |z3|)

≤

(

−(1− τ)βI −
βSI+(1− τ)βV I

E
−ξ−µ+α

)

|z1|−ξ|z2|

+

(

−(1−τ)βI−
βSI+(1−τ)βV I

E
−µ−η

)

|z3|+
(1−τ)βV I

E
|z4+z5+z6|.
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Since |z4 + z5 + z6| ≤ U2(z) < U1(z) ≤ |z1|+ |z3| and −ξ|z2| < 0, we have

D+‖z‖≤

(

−(1−τ)βI−
βSI

E
−ξ−µ+α

)

|z1|+

(

−(1−τ)βI−
βSI

E
−µ−η

)

|z3|

≤(α− µ)(|z1|+ |z3|).

Thus,

D+‖z‖ ≤ (α− µ)‖z‖. (4.14)

Case 5: U1(z) > U2(z), sgn(z1) = − sgn(z2) = sgn(z3) and |z1| > |z2|, |z1| >
|z3|. Then ‖z‖ = |z1|, so that

D+‖z‖ =D+(|z1|)

≤

(

−βI−(1− τ)βI−
βSI+(1 − τ)βV I

E
−ξ−µ−η+α

)

|z1|

+
(1− τ)βV I

E
|z4|+

βSI

E
|z5|.

Since |z4|, |z5| ≤ U2(z) < U1(z) ≤ |z1|, we have

D+‖z‖ ≤ (−βI − (1− τ)βI − ξ − µ− η + α)|z1| ≤ (α− ξ − µ− η)|z1|.

Thus,

D+‖z‖ ≤ (α− ξ − µ− η)‖z‖. (4.15)

Case 6: U1(z) > U2(z), sgn(z1) = − sgn(z2) = sgn(z3) and |z2| > |z1|, |z2| >
|z3|. Then ‖z‖ = |z2|, so that

D+‖z‖ =D+(|z2|)

≤−(1− τ)βI|z1|+

(

−βI−
βSI+(1− τ)βV I

E
−ξ−µ

)

|z2|

− η|z3|+
βSI

E
|z4 + z6|+

(1− τ)βV I

E
|z4|.

Since |z4|, |z4 + z6| ≤ U2(z) < U1(z) ≤ |z2|, −(1− τ)βI|z1| < 0 and −η|z3| < 0,
we have

D+‖z‖ ≤(−βI − ξ − µ)|z2| ≤ (−ξ − µ)|z2|.

Thus,

D+‖z‖ ≤ (−ξ − µ)‖z‖. (4.16)
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Case 7: U1(z) > U2(z), sgn(z1) = − sgn(z2) = sgn(z3) and |z3| > |z1|, |z3| >
|z2|. Then ‖z‖ = |z3|, so that

D+‖z‖ =D+(|z3|)

≤−βI|z1|−ξ|z2|+

(

−(1−τ)βI−
βSI+(1−τ)βV I

E
−µ−η

)

|z3|

+
βSI

E
|z5|+

(1− τ)βV I

E
|z5 + z6|.

Since |z5|, |z5 + z6| ≤ U2(z) < U1(z) ≤ |z3|, −βI|z1| < 0, and −ξ|z2| < 0, we
have

D+‖z‖ ≤(−(1− τ)βI − µ− η)|z3| ≤ (−µ− η)|z3|.

Thus,
D+‖z‖ ≤ (−µ− η)‖z‖. (4.17)

Case 8: U1(z) > U2(z), − sgn(z1) = sgn(z2) = sgn(z3) and |z1| + |z3| >
|z2|+ |z3|. Then ‖z‖ = |z1|+ |z3|, so that

D+‖z‖ = D+(|z1|+ |z3|)

≤

(

−(1−τ)βI−
βSI+(1−τ)βV I

E
−ξ−µ−η+α

)

|z1|+ ξ|z2|

+

(

−(1−τ)βI−
βSI+(1−τ)βV I

E
−µ−η

)

|z3|+
(1−τ)βV I

E
|z4+z5+z6|.

Since |z4 + z5 + z6| ≤ U2(z) < U1(z) ≤ |z1|+ |z3| and |z2| < |z1|, we have

D+‖z‖ ≤

(

−(1−τ)βI−
βSI

E
−µ−η+α

)

|z1|+(−(1−τ)βI−
βSI

E
−µ−η)|z3|

≤(α− µ− η)(|z1|+ |z3|).

Thus,
D+‖z‖ ≤ (α− µ− η)‖z‖. (4.18)

Case 9: U1(z) > U2(z), − sgn(z1) = sgn(z2) = sgn(z3) and |z2| + |z3| >
|z1|+ |z3|. Then ‖z‖ = |z2|+ |z3|, so that

D+‖z‖ = D+(|z2|+ |z3|)

≤τβI|z1|+

(

−(1− τ)βI −
βSI + (1− τ)βV I

E
− µ

)

|z3|

+

(

−βI−
βSI+(1−τ)βV I

E
−µ

)

|z2|+
βSI+(1−τ)βV I

E
|z4+z5+z6|.
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Since |z4 + z5 + z6| ≤ U2(z) < U1(z) ≤ |z2|+ |z3| and |z1| < |z2|, we have

D+‖z‖≤(−(1− τ)βI−µ)|z2|+(−(1− τ)βI − µ)|z3|≤−µ(|z2|+ |z3|).

Thus,

D+‖z‖ ≤ −µ‖z‖. (4.19)

Case 10: U2(z) > U1(z), sgn(z4) = sgn(z5) = sgn(z6). Then ‖z‖ = |z4| +
|z5|+ |z6|, so that

D+‖z‖ = D+(|z4|+ |z5|+ |z6|)

≤

(

−µ−
αE

I

)

|z4|+

(

−µ−
αE

I

)

|z5|+

(

−α−µ−
αE

I

)

|z6|+
αE

I
|z2+z3|.

Since |z2 + z3| ≤ U1(z) < U2(z) ≤ |z4|+ |z5|+ |z6|, we have

D+‖z‖ ≤ − µ|z4| − µ|z5|+ (−α− µ)|z6| ≤ −µ(|z4|+ |z5|+ |z6|).

Thus,

D+‖z‖ ≤ −µ‖z‖. (4.20)

Case 11: U2(z) > U1(z), sgn(z4) = sgn(z5) = − sgn(z6) and |z4| + |z5| >
|z4|+ |z6|. Then ‖z‖ = |z4|+ |z5|, so that

D+‖z‖ = D+(|z4|+ |z5|)

≤

(

−βI−µ−
αE

I

)

|z4|+

(

−(1−τ)βI−µ−
αE

I

)

|z5|+
αE

I
|z2+z3|.

Since |z2 + z3| ≤ U1(z) < U2(z) ≤ |z4|+ |z5|, we have

D+‖z‖ ≤(−βI − µ)|z4|+ (−(1− τ)βI − µ)|z5| ≤ −µ(|z4|+ |z5|).

Thus,

D+‖z‖ ≤ −µ‖z‖. (4.21)

Case 12: U2(z) > U1(z), sgn(z4) = sgn(z5) = − sgn(z6) and |z4| + |z6| >
|z4|+ |z5|. Then ‖z‖ = |z4|+ |z6|, so that

D+‖z‖ = D+(|z4|+ |z6|)

≤

(

−2βI−ξ−µ−
αE

I

)

|z4|+(η−(1−τ)βI)|z5|+

(

−α−µ−
αE

I

)

|z6|+
αE

I
|z2|.
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Since |z2| ≤ U1(z) < U2(z) ≤ |z4|+ |z6|, |z5| < |z6| and −(1− τ)βI|z5| < 0, we
have

D+‖z‖ ≤(−2βI − ξ − µ)|z4|+(η − α− µ)|z6| ≤ (η − µ)(|z4|+|z6|).

Thus,

D+‖z‖ ≤ (η − µ)‖z‖. (4.22)

Case 13: U2(z) > U1(z), sgn(z4) = − sgn(z5) = sgn(z6) and |z5| > |z4|+|z6|.
Then ‖z‖ = |z5|, so that

D+‖z‖ =D+(|z5|)

≤− ξ|z4|+

(

−(1− τ)βI −
αE

I
− µ− η

)

|z5|+
αE

I
|z3|.

Since |z3| ≤ U1(z) < U2(z) ≤ |z5| and −ξ|z4| < 0, we have

D+‖z‖ ≤(−(1− τ)βI − µ− η)|z5| ≤ (−µ− η)|z5|.

Thus,

D+‖z‖ ≤ (−µ− η)‖z‖. (4.23)

Case 14: U2(z) > U1(z), sgn(z4) = − sgn(z5) = sgn(z6) and |z4|+|z6| > |z5|.
Then ‖z‖ = |z4|+ |z6|, so that

D+‖z‖ = D+(|z4|+ |z6|)

≤

(

−ξ−µ−
αE

I

)

|z4|+(−η−(1−τ)βI)|z5|+

(

−α−µ−
αE

I

)

|z6|+
αE

I
|z2|.

Since |z2| ≤ U1(z) < U2(z) ≤ |z4|+ |z6| and (−η − (1− τ)βI)|z5| < 0, we have

D+‖z‖ ≤(−ξ − µ)|z4|+ (−α− µ)|z6| ≤ −µ(|z4|+ |z6|).

Thus,

D+‖z‖ ≤ −µ‖z‖. (4.24)

Case 15: U2(z) > U1(z), − sgn(z4) = sgn(z5) = sgn(z6) and |z4| + |z6| >
|z5|+ |z6|. Then ‖z‖ = |z4|+ |z6|, so that

D+‖z‖ = D+(|z4|+ |z6|)

≤

(

−2βI−ξ−µ−
αE

I

)

|z4|+((1−τ)βI−η)|z5|+

(

−α−µ−
αE

I

)

|z6|+
αE

I
|z2|.
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Since |z2| ≤ U1(z) < U2(z) ≤ |z4|+ |z6|, |z5| < |z4| and −η|z5| < 0, we have

D+‖z‖ ≤(−(1 + τ)βI − ξ − µ)|z4|+ (−α− µ)|z6| ≤ −µ(|z4|+ |z6|).

Thus,

D+‖z‖ ≤ −µ‖z‖. (4.25)

Case 16: U2(z) > U1(z), − sgn(z4) = sgn(z5) = sgn(z6) and |z5| + |z6| >
|z4|+ |z6|. Then ‖z‖ = |z5|+ |z6|, so that

D+‖z‖ = D+(|z5|+ |z6|)

≤−(ξ + βI)|z4|+

(

−µ− η −
αE

I

)

|z5|+

(

−α−µ−
αE

I

)

|z6|+
αE

I
|z3|.

Since |z3| ≤ U1(z) < U2(z) ≤ |z5|+ |z6| and −(ξ + βI)|z4| < 0, we have

D+‖z‖ ≤(−µ− η)|z5|+ (−α− µ)|z6| ≤ −µ(|z5|+ |z6|).

Thus,

D+‖z‖ ≤ −µ‖z‖. (4.26)

Combing the results of (4.11) − (4.26), we obtain

D+‖z‖ ≤ max{−µ+ α, −µ+ η}‖z‖.

By (4.9),

µ̄(A) ≤ max{−µ+ α, −µ+ η}.

Thus, µ̄(A) < 0 by (4.10).

In Section 3, it has shown that when R0 > 1, the model (1.2a)−(1.2d) has a
unique endemic equilibrium P ∗ and the disease-free equilibrium P0 is unstable.
The instability of P0, together with P0 ∈ ∂D, implies the uniform persistence
of the state variables. This can be seen by using the same arguments from
Theorem 4.3 in [3] and Proposition 3.3 in [7]. The uniform persistence, together
with boundedness of D, is equivalent to the existence of a compact absorbing
set in D. By Lemma 4.1, the endemic equilibrium is globally asymptotically
stable in the interior of D. The proof is complete.
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Fig. 1: The temporal solution found by numerical integration of the model
(1.2a) − (1.2e) with µ = 1.4671, β = 3.4180,Π = 3.4748, ξ = 1.0062, d =
0.5059, δ = 0.9750, α = 1.4399, τ = 0.9308, η = 1.0664 and initial conditions
S(0) = 1, V (0) = 1, E(0) = 1, I(0) = 1, R(0) = 1.

5. Numerical Simulations

In this section, we show the feasibility of the conditions of Theorem 4.2.

Example. In (1.2a) − (1.2e), let µ = 1.4671, β = 3.4180,Π = 3.4748, ξ =
1.0062, d = 0.5059, δ = 0.9750, α = 1.4399, τ = 0.9308, η = 1.0664. The model
(1.2a) − (1.2e) with above coefficients has an endemic equilibrium

P ∗(0.5665, 0.2171, 0.7999, 0.3907, 0.2596).

A direct calculation show that R0 = 1.0003 > 1, η − µ = −0.4007 < 0, α − µ =
−0.0272 < 0. By Theorem 4.2, we see that the endemic equilibrium P ∗ is
globally asymptotically stable. The numerical simulation illustrates our result
(see Figure 1).

6. Conclusion

In this paper, the dynamics of a SEIR epidemic model with a waning preventive
vaccines is investigated. We have shown that the dynamics of the system are
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almost completely determined by the basic reproductive number R0. If R0 < 1,
the disease free equilibrium is globally asymptotically stable while the endemic
equilibrium is not feasible. In this case, the disease dies out. If R0 > 1, the
endemic equilibrium is globally asymptotically stable provided u > max{α, η}.
To control the disease, a strategy should reduce the basic reproduction number
to below unity. From the expression of R0, we see that R0 is an increasing func-
tion of η. Thus, it is necessary and important for public health management to
control an epidemic by increasing the duration of the loss of immunity induced
by vaccination (1/η), which reduces the the basic reproduction number.

Appendix

The expression of H in ∆3 is defined in the following.

H = ατβ2S∗I∗{(α+ µ)(δ + d+ µ)(ξ + η) + α(1− τ)β2I∗(S∗ + V ∗)

+ µ[α(µ + δ + d) + (ξ + η + (2− τ)βI∗)(α + µ+ δ + d)]

+ (ξ+µ+η+(2− τ)βI∗)[(α+µ+δ+d)(ξ+µ+η+(2 − τ)βI∗+δ+d)

+ (α+ µ)2] + (ξ + 2µ+ η + (2− τ)βI∗)[(1 − τ)βI∗(βI∗+µ+ξ+η)

+ τηβI∗ + µ(βI∗ + η + ξ + δ + d)]}

+ α(1− τ)β2I∗(S∗ + V ∗){(α + µ)(δ + d+ µ)(1− τ)βI∗

+ (α+ 2µ+ δ + d)[(βI∗ + µ+ ξ + η)(µ + (1− τ)βI∗) + τηβI∗]}

+(1−τ)βI∗(α+µ)(δ+d+µ){(α+µ)[µ(ξ+2µ+η+δ+d)+α(µ+(1−τ)βI∗)]

+(µ+δ+d)[2µ(ξ+2u+η+(2 − τ)βI∗)+(µ+(1− τ)βI∗)(α+δ+d)]

+ (ξ + 2µ + η + (2− τ)βI∗)[µ(βI∗ + α+ 2µ + η + ξ)

+ (ξ + 2µ + η + (2− τ)βI∗)(α+ 2µ + δ + d)]}

+ (1− τ)βI∗(µ+ δ + d)3(βI∗ + µ+ ξ + η)(ξ + 2µ + η + (2− τ)βI∗)

+ (1− τ)β2I∗2[µ(ξ + 2µ+ η + (2− τ)βI∗)2(µ+ 2(δ + d))

+ (δ + d)2(ξ + 3µ+ η + (2− τ)βI∗ + α)(ξ + η + (2− τ)βI∗)]

+[(1−τ)βI∗(βI∗+µ+ξ+η)+τηβI∗]{(α+2µ+δ+d)[(α+µ)(δ+d+µ)(ξ+η)

+ (ξ + 2µ + η + (2− τ)βI∗)(βI∗ + µ+ η + ξ)(2µ + (1− τ)βI∗)

+ (ξ + 2µ + η + (2− τ)βI∗)τηβI∗]
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+ (ξ + 2µ+ η + (2− τ)βI∗)(α+ µ)[α(α + 2µ) + βI∗(δ + d+ µ)

+ (α+ 2µ + δ + d)(ξ + 2µ+ η + (2− τ)βI∗) + µ2]}

+µ(ξ+2µ+η+(2−τ)βI∗)(α+2µ+δ+d)(βI∗+µ+η+ξ)[µ(βI∗+µ+η+ξ)

+ (ξ + 2µ+ η + (2− τ)βI∗)(α+ 2µ+ δ + d)]

+ (ξ + 2µ+ η + (2− τ)βI∗)2(µ + δ + d)2[βI∗η + (1− τ)(µ + ξ)βI∗]

+µ(α+µ)(δ+d+µ)[(1 − τ)(α+δ+d)ηβI∗ + (α+δ+d)βI∗(ξ+2µ)

+2µ(βI∗+µ+η+ξ)(ξ+2µ+ η)+(α+δ+d)(µ + η + ξ)(ξ + 2µ+ η)]

+ µ(α+ µ)2[(1− τ)βI∗(δ + d)(µ + η + ξ) + (1− τ)βI∗(α+ 2µ))

+ (βI∗ + µ+ η + ξ)((ξ + 2µ+ η + βI∗)(α+ 2µ+ δ + d)]

+ µ(µ+ δ + d)(α + 2µ+ δ + d)2[η(µ + η + ξ)

+ (ξ + 2µ+ (2− τ)βI∗)(βI + µ+ η + ξ)+]

+ (1− τ)βI∗µη(µ + δ + d)[(α + µ)(α+ 2µ+ δ + d) + (µ+ δ + d)2]

+ τηβI∗(δ + d+ µ)3(ξ + η + (2− τ)βI∗)
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