International Journal of Applied Mathematics

Volume 28 No. 1 2015, 85-98

ISSN: 1311-1728 (printed version); ISSN: 1314-8060 (on-line version)
doi: http://dx.doi.org/10.12732/ijam.v28i1.7

GLOBAL OPTIMIZATION IN INVERSE ELLIPSOMETRIC
PROBLEM FOR THIN FILM CHARACTERIZATION

Lekbir Afraites

Laboratoire de Math. et Appl.
Fac. des Sci. et Techn.

University Sultan Moulay Slimane
P.O. Box 523, Beni-Mellal, MORROCO

Abstract: In the current work, we consider the inverse ellipsometric prob-
lem for thin film characterization which consists in determining the shape of a
diffracting feature from an experimental ellipsometric data. The reformulation
of the given nonlinear identification problem was considered as a parametric
optimization problem using the Least Square objective function. The evalu-
ation of the latter is often expensive as it implies the solution of the direct
problem for each iteration. In this work, we propose a design procedure for
global robust optimization using a probabilistic approach based upon Kriging
method. Robustness is determined by the Kriging model to reduce the number
of real functional calculations of Least Square objective function. The technical
of the global optimization methods is adopted to determine the global robust
optimum of a objective function considered.
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1. Introduction

The process control in microelectronics manufacturing requires real time mon-
itoring techniques. Among the different metrology techniques, scatterometry,
based on the analysis of the light diffracted by microscale patterns using for
example an ellipsometer, is well suited. The problem of computing the signa-
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ture from a given structure shape, which is referred to as the direct problem,
is dealt with using conventional Maxwell equations solvers, generally based on
modal methods [10]. On the opposite, the inverse problem [11, 4], which al-
lows the determination of the feature shape from an experimental signature is
solved by parametric optimization problem using the Least Square objective
function. This inverse problem is difficult to solve. On one hand, the problem
is ill-posed, which requires for example the use of regularization methods. On
the other hand, the use of traditional optimization methods brings us back to
a local optimum and the quality of the result depends on the initial point. To
solve this problem, one generally use [13, 14] precomputed library and look for
the best matching signatures inside this library (hence the supposedly best pa-
rameters). Among the disadvantages of this method, the computing time of the
direct problem is extremely expensive. In order to deal with the issue of local
optimum and the dependence of the initial point, we propose an approach based
on the Kriging interpolation method and its use as a technique for global opti-
mization. The paper is organized as follows. In the second section, we present
the principles of ellipsometric scatterometry and then describe the direct prob-
lem. In Section 3, we present the inverse problem which we will consider in the
present work. In Section 4, we present the efficient global optimization (EGO)
[6] algorithm. It sequentially samples results from an expensive calculation,
does not require derivative information and uses an inexpensive surrogate itself
obtained by Kriging method to search for a global optimum. In the final sec-
tion, we present an application of the algorithm EGO on a synthetic example
and the inverse problem of ellipsometry where in the first example, we deter-
mine the shape of a diffracting feature from the synthetic data and the second
example we use experimental data delivered by the LTM-laboratory Grenoble,
France.

2. Direct Problem: Ellipsometric Signature

Scatterometry is used as a generic term for several metrology methods. It may
be described as a measurement technique allowing for a quantitative evalua-
tion of the geometrical or material properties of an object through the analysis
of the light scattering from the surface under test. Since no imaging optics
is used, the surface and the shape have to be reconstructed from intensity
and /or polarization data detected in the far field. In our case, we use the spec-
troscopic ellipsometry. The metrology device that measures the polarization
change upon reflection by the sample is kept static whereas the incident wave-



GLOBAL OPTIMIZATION IN INVERSE ELLIPSOMETRIC... 87

length is varying. As mentioned in the introduction, the direct problem is used
to establish signatures from a given shape topography using a Maxwell solver.
We use the Modal Method by Fourier Expansion to do that [10]. This method
is well adapted for the rectangular topography of the samples used in the mi-
croelectronic manufacturing which are of primary interest for us. The direct
problem computes theoretically the ellipsometric signal values I's and I¢ (from
Fresnel Equations), that will be denoted by Ist and Ic! where i represents the
wavelength (i € N) :
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Figure 1: principe

Ist =sin2¢sin A, Ic! =sin2ycos A,

for a 0 angle between the polarizer and the modulator, (1)

Ist =sin2iy, sinA, Ic = cos2y,

for an angle 7 between the polarizer and the modulator. (2)

In these two equations, ¥ and A are computed as follows

p= v _ tan ¢ >, (3)

T's
Equations (3) represents the formalism which allows to compute p, the ratio of
complex reflectivities. 7, and ry are the Fresnel reflection coefficients for the P
and S polarization respectively. The ellipsometry measures the change in the
amplitude ¥ and phase A, between the p (parallel) and the s (perpendicular)
components of polarized light upon reflection from a surface [3]. Once 3 and
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A are known, one can theoretically compute Is® and I¢! using Equations (1) or
(2), depending on the configuration of the ellipsometer.

3. Inverse Problem

The ellipsometer provides us with the measured data Is™ and Ic™, for the
interval [1,..., N] of wavelength (or energy-eV), where i represents the wave-
length (i € N) and m indicates that these are measured values. Our goal is to
solve the inverse problem [10, 11] which allows determining of the feature shape
from an experiment ellipsometric values Is™ and I¢™. For this, We transform
our inverse problem to an optimization problem where the unknowns are the
feature shape. We fit our parameters to experimental data Is™ and I¢" using
parameter identification methods. Parameter identification utilizes optimiza-
tion methods to find the best parameter values. We consider the least squares
objective function can be written as a difference between the direct signal the-
oretically calculated and experimental values measured:

I
=z

i

J(L) =5 3 [(Ist = Is7)? + (16 = 162, (4)

N | —

1

-
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where L is the set of parameters optimization (generally describing the pat-
tern shape). The objective of this work is to find the global optimum for this
objective function J using the response surface obtained by Kriging method.
For more details on the Kriging see [12, 9]. In our study, we applied the Krig-
ing technique for the reconstruction of the ellipsometric signatures [2] and we
use the global optimization techniques [6] described in the next section. Re-
cently, this technique was used to identify the parameters in a model of immune
competition [1].

4. Kriging Method and Global Optimization Technique
4.1. Kriging Method

The Kriging method is exact interpolation method [12, 9], developed by Math-
eron and Krige [5], is based on the theory of regionalized variables. It is a
stochastic interpolation, which has proved to be reliable when approximating
deterministic behaviours [7]. Indeed, it attempts to obtain statistically the op-
timal prediction, i.e. to provide the best linear unbiased estimator. The basic
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premise of the Kriging interpolation method is that every unknown point can
be estimated by the weighted sum of the known points. The method also pro-
vides a mechanism for estimating the interpolation error for any approximated
point. Thus, the use of this interpolation method allows to enrich the number
of usable data together with controlling the error of the added approximated
values [2].

More precisely, given the previously computed values of the objective func-
tion f(x1),..., f(x,) at the data points z1, ..., z,, Estimating the value of vari-
able z in a not sampled site by a linear combination of specific data

F@) = 3" Af (),
=1

where \; depend on the distance of the test point z from observed points. The
Kriging technique is essentially a method of interpolation between known points
that provides a mean prediction f (x), as well as a measure of the variability of
the prediction s(z) (the standard error MSE).

4.2. Global Optimization Technique

This section is inspired by the work of Donald Jones et al. [6]. The idea is based
on the optimization of the response surface constructed by a Kriging model.
The simplest possible way would be to fit a surface to the response surface then
to find the minimum of this surface. However, if we proceed that way, we can
easily be lead to a local minimum, and we have no specific information on the
uncertain areas of the approximated response surface. To overcome this issue,
we must put some emphasis on sampling the surface where we are uncertain, this
is inherently measured by the standard error of the predictor. To combine the
search for local and global minimum and we take into account the uncertainties
of the Kriging surfaces, we use a criterion based of the balance between local
and global search. This criterion is knows as expected improvement. It was
introduced in the literature in 1978 in [8]. The expected improvement criterion
is computed as follows. Let fp,, = min(f(z1),..., f(x,)) be the current best
function value. The improvement function I at the point x is defined as follows:

I(x) = max (fmm — F(x), 0), (5)

where F(zx) is Normal (f,s2), i,e, F is a random variable with the mean and
standard deviation given by the kriging predictor f and its standard error s.
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The expected improvement, defined as the expectation of the improvement,
is given by [6]:

s(z) s()

where ¢ is the standard normal cumulative density function, and @ is the stan-
dard normal probability density function.

This technique of global optimization consist of finding a good balance be-
tween minimum search and global exploration. Minimum search will result in
a good approximation of the global minimum if the region of the global mini-
mum is correctly represented by the response surface, and if this surface does
not introduce minima lower than the global minimum. In order to guaran-
tee a trustworthy representation, a more or less uniform coverage of the whole
domain of interest should be generated.

E[I(@)] = (fmin — F(@)) 6 ) +s@e( ). ©

4.3. Algorithm

The point where the value of the expected improvement is maximum gives
the best point to evaluate the objective function. The expected improvement
is constructed to search for both local and global minima [6]. The surrogate
model is then updated to include the newest sampled point, and the operation
is repeated until the sampling point does not change and the global minimum
of the objective function has been found. An overview of the algorithm is given
as follows:

Algorithm 1 Global optimization method

Choose a number of initial evaluation points.

The objective function f is evaluated for all new members of the set.

A Kriging surrogate model is fitted to the values of the objective function.
Maximization of the expected improvement objective function E[].

The result of the maximization (the next input point most likely to improve

the objective function) is added to the set.
6: The process repeats from step 2 until a predetermined number of iterations
is reached or

MazE[I(x)]
fm'm

< €.
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5. Numerical Experiments and Results
5.1. Synthetic Numerical Results

In order to validate and to explain the Global Optimization method, we first
made a test with a simple synthetic example . We consider the true function:

f(z) = x.sin(z) + z. cos(2x). (7)

Our main goal is to find the global optimum of the true function (7) (the solid
blue line in Figure 2). We consider that we have only few points generated by
this true function (the red star in Figure 2), and we create an approximated
response surface using the Kriging method (the black dotted line in Figure
2). It is associated with the standard error MSE (shown as the green line in
Figure 2). Now, we apply the global optimization algorithm described above

Kriging
)
MSE

Figure 2: The true function (blue solid line), the set points used
for the kriging interpolation (red star), the surface Kriging (black
dashed line) and the estimator error (green solid line)

to the problem constructed by the set the real points (f(:):l), ey f($7)) (the red

star) and the surface f(x) obtained by Kriging. In Figure 3, we present the
expected improvement criterion E[I(z)] (the green solid line in Figure 3) and,
where it reaches its maximum value, we added another point in the set (now
we have 8 real points). The f(z) coordinate of this point is evaluated using
the true function 7 (the black triangle in the right Figure 3). This process was
repeated until the sampling point does not change and the global minimum of
the objective function has been found. The global optimization method has
run using an initial sampling of 7 points to build the surrogate (the shaded line
in Figure 4). A further 5 function evaluations (the triangle in Figure 4) were
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E[(]

Figure 3: The true function (blue solid line), the set of points used
for the kriging interpolation (red star), the Kriging surface (black
dashed line), the Expected Improvement criterion (green sold line)
and in the right the true function with the add point (the triangle)

required to find the global minimum. Now, we apply the global optimization
method with an initial sampling of 2 points and the method is able to find
reasonable solution in 13 function evaluations (see right of Figure 4).

15

10

Figure 4: In the left the convergence method with 7 points and in
the right the convergence with 2 points as initial set

5.2. Applications of Inverse Ellipsometric Problem

Now, we consider the inverse ellipsometric problem for thin film characteriza-
tion. We are interested to find the shape defined in Figure 5, described by
(H,CD) from measurements data. For this, we applied the global optimization
algorithm using the Least Square cost function (4) from simulated data where
(H,CD) parameters of optimization.
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Figure 5: the pattern shape determining

First, we present the numerical solution of the direct problem ( Is(t;), [ c(ti)) ,

i =1,...,n with H = 100nm and CD = 150nm. The latter is solved numeri-
cally with the Modal Method by Fourier Expansion[10] (Figure 6). To identify

12 1
08 f‘\
1 /
06 / \v
08 04

06 02

4
04 02
02 04

-0.2 -1
0

Figure 6: Solution of direct problem, in the right I's, in the left Ic
with H = 100nm and C'D = 150nm

the parameters model (H,CD), we generate simulated test data using the solu-
tion of direct problem and we apply the algorithm described in Section 4.3. For
the tests with noisy data, we perturbed the numerical solutions, by a Gaussian
noise with fixed amplitude. In Figure 7, we present the convergence of global
optimization where the initial evaluation points is 4 corners points (red star
in the figure) and the new evaluation points (the triangle in the figure). The
algorithm converges to H = 99.5733 and C'D = 150.2976 after 31 evaluations
of cost functions. In the following, we present the identification results by using
the algorithm described in the paragraph 4.3 for different shapes. In the fol-
lowing table, the first column contains the exact shape (H,CD) from which we
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Figure 7: In the left, the evaluation of the objective function at
the evaluation points, in the right, the maximum of the expected
improvement E(I)

have formed measurements Ic¢™, Is™, the second column is reserved for identi-
fied shapes by optimization algorithm. Numerical tests have been done using
the Gaussian noise fixed at 3%.

The exact shapes | Identified shapes

100 150 99.8432  150.1517
100 120 99.9457  119.8156
80 150 79.3635  150.6197
90 160 90.3090  159.6743

Table 1: Identification results of differents shapes

In what follow, we present some numerical tests which show the comparison
between the noisy data and the solution of the direct problem generated by the
identified parameters.

* Isdata
Is identified

1 #

Figure 8: comparison between the noisy data and the solution of the
direct problem generated by the identified parameters
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5.3. Experimental Measurements

Now, we use experimental measurements delivered over the laboratory LTM.
Then we applied the global optimization algorithm combined with the Kriging
model.

5.3.1. Real Case: A Film Plan of Thickness

In order to find the thickness of a thin polymer film which optical indices n and
k are known. We use the objective function described in section 3 by equation
(4). The direct problem computes theoretically the ellipsometric signal values
Ist and Ic! and the ellipsometer provides us with the measured data Is™ and
Ic™.

To show the performance of our method, we compared it with the con-
ventional method of optimization (classical regression). Using a classical opti-
mization scheme based on conjugate gradient method, we found the following
results:

e If the initial point is 150, the method converges to 99,4861 with 32 eval-
uations of the objective function.

e If the initial point is 170, the method converges to 318.6035 with 1474
evaluations of the objective function.

We remark that the final optimum provided by this method depends on the
initial point and aimed at providing only a local minimum.

Now, we present the results of the global optimization method. We show
in the next Figure 9, the initial previously known points and the point which
were added during the EGO process. In Figure 9, we initiated the algorithm
by 9 points (red star in Figure 9).

In this case, we obtained a convergence after 21 evaluations (blue plus in
Figure 9). When using 6 points of initialization, the EGO algorithm converged
after 26 evaluations which is much lower than the number of evaluations needed
with the local optimization algorithm. In order to push the limits even further,
we tried to use as few as 4 and even 2 values for initial points. The results of
the EGO algorithm are reported in Figure 10. We can see that the EGO is able
to find reasonable solution in 32 and 36 function evaluations. We present this
results in the Table 2.
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Figure 9: On the left, the EGO with 9 values for initial points, on
the right, the EGO with 6 initial points
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Figure 10: In the left, the EGO with 4 values for initial points, in
the right, the EGO with 2 initial points.

Number measurements | Number evaluations
9 21
6 26
4 32
2 36

Table 2: Number of mesasurements and the objective function eval-
uation
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