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1. Introduction

The Navier-Stokes equations are used to describe various fluids flows in nature
such as: shallow water, in aerodynamic, in hydrodynamic, in meteorology, etc.
For this reason, different numerical methods are developed with the aim to
reproduce or predict the physics of the phenomenon. Among these methods
we can cite: the finite element method: Girault et al. [14], Glowinski et al.
[15] and Temam [26], the spectral method: Bernardi et al. [4], Hussaini et al.
[16] and Minev et al. [22] and the finite volume method: Boivin et al. [5] and
Boivin et al. [6]. In this work we are interested in the finite volume method
which is particularly popular due to its conservative nature. In any case, one
of the major difficulties to solve the compressible Navier-Stokes equations for a
viscous fluid is the non-linearity which appears in the convective term. Differ-
ent methods are used to treat this non-linearity like the characteristics’ method
see Pironneau et al [23] or the two-grid scheme in Abboud et al. [1]. But the
most traditional approach to overcome this difficulty is the fractional time step
method: Chorin [7], Temam [25] and Boivin et al. [6]. In general, the dif-
ferential operators admit a decomposition into a sum of components of simple
structure. This observation is the key issue in the operator splitting approach,
since the operator components can be treated separately rather than simulta-
neously. So our splitting is based on a separation of the physical phenomena
which interact in the compressible Navier-Stokes equations, in occurrence the
convection and the diffusion in order to use convenient method for each part.
The Godunov method is applied for the convective flux. For the diffusive part,
different schemes can be used. The cell-centred finite volume scheme is widely
used in fluid dynamics community: Boivin et al. [5], Boivin et al. [6], Eymard
et al. [10] and [11] and are largely considered in commercial codes. But the
major disadvantage of this scheme is that it can be applied only on orthogonal
meshs. In Komla et al. [8] and Manzini et al. [21] this constraint has been
overcome by considering a dual mesh based on diamond cells built from cells
centroid of the primal mesh. This approach remains computationally efficient
in 2D but in 3D the complexity becomes easily out of control.

A new scheme is presented in this work to compute the gradient and di-
vergence on the cell interfaces. In our approach, we use cells surrounding the
interface on which we want to approach the flux without considering another
mesh. This allows us to evaluate the interfacial gradient and divergence us-
ing simply the discrete unknowns in the considered cells and a simple change
between the canonical basis and a new basis built from the centroids of the
surrounding cells.
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The paper is organized as follows. We first recall the compressible Navier-
Stokes equations and we present the convection and the diffusion parts obtained
by using the fractional step method. Then we present in Section 3 how we
compute respectively the convective and the diffusive flux obtained from the
finite volume discretization. Finally, Section 4 is devoted to the validation
tests, first for every part separately and secondly for the complete system.

2. Governing Equations

The Navier-Stokes equations for compressible viscous fluids are given by:


































∂ρ

∂t
+∇ · (ρu) = 0,

∂ρu

∂t
+∇ · (ρu⊗ u)− µ△u− (

µ

3
+ λ)∇(∇ · u) +∇p = f ,

∂ρE

∂t
+∇ ·

((

ρE + p
)

u
)

= −∇ · q−∇ ·
(

σu
)

+ u · f ,

(1)

where ρ, u=(u1, u2, u3), E = e+ ‖u‖2

2 , p, σ = µ
(

∇u+∇uT
)

−
(

λ− 2
3µ

)

Id∇ ·u
and f denote respectively the density, the velocity components, the total energy,
the pressure, the stress tensor and the external forces. µ and λ are the dynamic
and compression viscosities. System (1) is closed by considering the following
state law (see Abgrall et al. [2] and Andrainov et al. [3]):

P (ρ, e) = (γ − 1)ρe− γP∞ , e(ρ, θ) = P∞/ρ+ Cvθ· (2)

Here γ and P∞ are given constants depending on the fluid (air: γ = 1.4, P∞ = 0,
water: γ = 5.5, P∞ = 407.106), Cv is the calorific capacity with constant
volume and θ is the temperature. Moreover, the system (1) is completed by
the initial condition and boundary conditions. To solve numerically the system
(1), we use the fractional step method. It consists to treat the convective
and diffusion parts while preserving the interaction between them with well
appropriate initial conditions. This amounts to trait:

First step: Convection part


































∂ρ

∂t
+∇ · (ρu) = 0,

∂ρu

∂t
+∇ · (ρu⊗ u) +∇p = 0,

∂ρE

∂t
+∇ ·

(

(

ρE + p
)

u

)

= 0.

(3)
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Second step: Duffision part

In this step we use the Fourier law and the internal energy state law (2), to get
the momentum diffusion











∂ρ

∂t
= 0,

ρ
∂u

∂t
− µ△u− (

µ

3
+ λ)∇(∇ · u) = f ,

(4)

and the heat diffusion

ρCv
∂θ

∂t
− k△θ =

(

λ−
2

3
µ
)

|∇ · u|2 +
µ

2
|∇u+∇uT |2. (5)

3. Numerical Discretization

The numerical discretization of all parts is done using the finite volume method,
so the physical domain is discretized to from disjoint hexahedrons named cell
and denoted by Mi. Let us denote by △t the time step discretization, and for
any continuous variable c(x, t), cni represent the discrete variable in Mi at time
tn = n△t. At t = 0 we consider c0i as the average value of the initial condition
in each Mi. The discrete systems are obtained by integrating on [tn, tn+1]×Mi.
Now we assume that: ρni , u

n
i , p

n
i and θni are given. In the first step we solve the

convection part. The numerical solutions denoted by ρ
n+ 1

2

i , u
n+ 1

2

i , p
n+ 1

2

i and

E
n+ 1

2

i are computed by the following discrete system:

ρ
n+ 1

2

i = ρni − 1
|Mi|

∑

σij∈∂Mi

∫ tn+1

tn

∫

σij
ρijuij · nijdΓdt,

ρ
n+ 1

2

i u
n+ 1

2

i = ρni u
n
i − 1

|Mi|

∑

σij∈∂Mi

∫ tn+1

tn

∫

σij
(ρij(uij · uij) · nij + pij · nij)dΓdt,

ρ
n+ 1

2

i E
n+ 1

2

i = ρni E
n
i − 1

|Mi|

∑

σij∈∂Mi

∫ tn+1

tn

∫

σij
(ρijEij + pij)uij · nijdΓdt,

(6)

where ρij, uij , Eij and pij represent the values of ρ, u, E and p on the interface
σij and nij is the corresponding outward unit normal vector. |Mi| is the measure
of Mi.
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In the second step we solve the diffusion part; as initial conditions we take:

ρ
n+ 1

2

i , u
n+ 1

2

i for the system (4) and θ
n+ 1

2

i =
1

Cv
(E

n+ 1

2

i −
‖u

n+ 1

2

i ‖2

2
) −

P∞

Cvρ
n+ 1

2

i

for the system (5). Finally we compute ρn+1
i , un+1

i , pn+1
i and θn+1

i by:

ρn+1
i = ρ

n+ 1

2

i ,

ρn+1
i un+1

i − (µ3 + λ)
∑

σij∈∂Mi

∫ tn+1

tn

∫

σij
(∇ · un+1

i ) · nijdΓ

−µ
∑

σij∈∂Mi

∫ tn+1

tn

∫

σij

(∇un+1
i

· nij)dΓ = ρu
n+ 1

2

i + fn+1
i ,

(7)

Cvρ
n+1
i θn+1

i − k
∑

σij∈∂Mi

∫ tn+1

tn

∫

σij
(∇θn+1

i · nij)dΓ = Cvρ
n+1
i θ

n+ 1

2

i

+
(

λ−
2

3
µ
)

|∇ · un+1
i |2 +

µ

2
|∇un+1

i +∇un+1
i

T
|2.

(8)

One of the key points of the discretization method using the finite volume is
the calculation of interfacial flux. This will be done in our case for the systems
(6), (7) and (8) in the following subsections.

3.1. Convective Flux

Calculating the convective flux in the system (6) is to determine the values of
ρij , uij , Eij and pij. Using the fact that:

• the flux depends on the variation of the discrete solutions in the normal
direction nij ,

• the rotation invariance of the Euler equations (see Edwige et al. [9] and
Toro [27]),

• the discrete unknown being constant by cell,

we can decompose the velocity, in the aim to compute the normal velocity uη
together with ρij and pij by solving the system:



















∂W

∂t
+

∂F(W)

∂η
= 0,

W(η, 0) =

{

(ρi, ρiui · nij , ρiEi) if η < 0,
(ρj , ρjuj · nij , ρjEj) if η > 0,

(9)
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with: W = (ρij , ρijuη, ρijEij)
T , F(W) = (ρijuη, ρiju

2
η + pij, ρijEij)

T .
Knowing uη, the tangential components of the velocity uζ and uν (in the

plane containning the interface σij) are solutions of:






















∂uζ
∂t

+ uη
∂uζ
∂η

= 0,

uζ
(

η, 0
)

=

{

ui · τ1 if η < 0,
uj · τ1 if η > 0,























∂uν
∂t

+ uη
∂uν
∂η

= 0,

uν
(

η, 0
)

=

{

ui · τ2 if η < 0,
uj · τ2 if η > 0.

(10)

Here the vectors τ1 and τ2 generate the plane containning σij . In the systems
(9) and (10); ρi, ui, pi (respectively ρj, uj , pj) are the density, the velocity
and the pressure in Mi (respectively in Mj) on both sides of the interface σij .
Finally the velocity on the interface is uij = (uη, uζ , uν).

It remains to solve the systems (9) and (10). As the system (9) is strictly
hyperbolic, its solution is composed of three waves separated by four constant
states. The 1-wave and the 3-wave are genuinely nonlinear and the 2-wave is
linearly degenerate. The entropic solution of the 1D Riemann problem (9) is
largely studied in the case of a perfect gas: Edwige et al. [9], Lax [20] and Serre
[24]. An extension is presented in this work by considering the more general
law (2) which can be applied for a very large kind of fluids. Under the Lax
condition and considering the solution of (9) in the phase space, we deduce the
following expressions of the different waves:
1-Wave


























u1S(p) = ul −

√

2

ρl

√

(p− pl)
2

(γ + 1)p + (γ − 1)pl + 2γP∞
p > pl,

u1R(p) = ul +
2

γ − 1

√

γ

ρl

(

√

pl + P∞ −
√

p+ P∞

(

pl + P∞

p+ P∞

)

1

2γ
)

p < pl,

3-Wave


























u3S(p) = ur +

√

2

ρr

√

(p − pr)
2

(γ + 1)p + (γ − 1)pr + 2γP∞
p > pr,

u3R(p) = ur −
2

γ − 1

√

γ

ρr

(

√

pr + P∞ −
√

p+ P∞

(

pr + P∞

p+ P∞

)

1

2γ
)

p < pr,

2-contact discontinuity
{

[u] = 0,
[p] = 0,



A FINITE VOLUME METHOD TO SOLVE... 71

where ρl = ρi, ρr = ρj, ul = ui · nij, ur = uj · nij, pl = pi, pr = pj and [ ]
represents the jump.

U

1

R
3

U 3
S

 1
 S

R  U

  U

  U

p

u  l
u  r

u *

   p *   p   l p  r

Figure 1: The solution of the Riemann problem in the phases space
(p, u).

The intermediate values u∗, p∗ are deduced from the intersection between
the 1-wave and the 3-wave as shown in Figure 1. ρ∗1 and ρ∗2 are given by:

ρ∗1 =



















ρl

(

p∗ + P∞

pl + P∞

)
1

γ

1-rarefaction,

ρl
(γ + 1)p∗ + (γ − 1)pl + 2γP∞

(γ − 1)p∗ + (γ + 1)pl + 2γP∞
1-shock.

ρ∗2 =



















ρr

(

p∗ + P∞

pr + P∞

)
1

γ

3-rarefaction,

ρr
(γ + 1)p∗ + (γ − 1)pr + 2γP∞

(γ − 1)p∗ + (γ + 1)pr + 2γP∞
3-shock.

Using the exact solution of the 1D Riemann problem (9), we obtain ρij , uη
and pij in the normal direction. Thereafter the solutions of the system (10) are
computed as follow:

uζ =

{

ui · τ1 if uη > 0,

uj · τ1 if uη < 0,
and uν =

{

ui · τ2 if uη > 0,

uj · τ2 if uη < 0.
(11)
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Boundary Conditions

The 1D Riemann problem (9) is established in the case of an internal interface,
in other words, if the datum are known on both sides of the interface. For a
boundary interface the flux is computed in another way. The ghost cells method
presented in Kirkkörrü et al [18] consists to build a mirror state according to
the left state available and the boundary condition imposed on the edge, it
allows to have a complete Riemann problem. In the present work we solve the
half Riemann problem, which is considered as a Cauchy problem, for which the
initial datum is the only discrete unknown in the cell Mi and the boundary
condition.

3.2. Diffusive Flux

The diffusive flux in systems (7) and (8) is determined by approximating the
gradient and divergence at the interface. For an orthogonal mesh this flux is
computed using the cell-centred finite volume scheme like in Boivin et al [5]
and Boivin et al. [6].

If this condition is not satisfied, a solution is presented in 2D case by Faille
[12]. It consists in considering always the two adjacent cells and creating inside
them two points such that the line connecting the new points is orthogonal to
σij and then applies the centered finite difference scheme using an interpolation
of the unknown at these creating points. In 3D, the different possibilities of
interpolation make this scheme not useful. In our approach, we build a new
basis in which the approximation of the interfacial gradient and divergence is
possible by the centered finite differences. Thus as first vector of this basis we

take
−−−→
XiXj . We supplement this vector by two others vectors

−−−→
XaXb and

−−−→
XcXd

where Xa, Xb, Xc, Xd are artificial points computed respectively as mid-point
of the centroids of the two cells which are at the top, in the lower part, in front
and behind the interface on which we want to approach the flux (see Figure 2)

Xa = X3+X6

2 , Xb =
X4+X5

2 , Xc =
X9+X10

2 , Xd = X7+X8

2 .

Then the interfacial gradient and divergence are computed in this new basis
and finally projected onto the normal direction. The obtained approximations
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Figure 2: Construction of the points

are given by (12), (13) and (14)

(∇u · nij)
k ≈

3
∑

l=1

Pkl

(

uk
j − uk

i

Di.j
[P−1]1 · nij +

uk
a − uk

b

Da.b
[P−1]2 · nij

+
uk
c − uk

d

Dc.d
[P−1]3 · nij

)

,

(12)

(∇ · u) · nij ≈
u1
j − u1

i

Di.j
nij +

u2
a − u2

b

Da.b

nij +
u3
c − u3

d

Dc.d

nij , (13)

∇θ · nij ≈
θj − θi
Di.j

[P−1]1 · nij +
θa − θb
Da.b

[P−1]2 · nij +
θc − θd
Dc.d

[P−1]3 · nij, (14)

where P is the matrix whose columns are
−−−→
XiXj,

−−−→
XaXb and

−−−→
XcXd, [P

−1]l is the
lth row of the matrix P−1, uk the kth component of u. ua, ub, uc and ud are
values of u at the points Xa, Xb, Xc, Xd given by:

ua = u3+u6

2 , ub =
u4+u5

2 , uc =
u9+u10

2 , ud = u7+u8

2 .

The temperatures θa, θb, θc and θd are computed in the same manner. Fi-
nally, Di.j = d(Xi,Xj), Da.b = d(Xa,Xb) and Dc.d = d(Xc,Xd) (d(·, ·) is the
distance).
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Boundary Cell Treatment

In this part we will discuss the case of a cell having one or more of its faces
on the boundary. According to its position, two cases arise: first the cell has a
neighbor between the interface on which we want to approach the flux but not
on some of its faces. The second case is that the cell does not have nor neighbors
associated with the considered face but also between some of its faces. Our idea
is to construct the artificial points by considering the centroids of some faces.
We present in the following some specific cases.

1. Case 1: The neighbor cell is available

For example in the configuration shown in Figure 3 (Case 1-a), we replace
Xa orXb by the midpoint of the face which is at the top or in lower part of
the face where we want to approach the flux. Or in another situation like
that shown in Figure 3 (Case 1-b), we replace Xa or Xb by the midpoint
of the corresponding Mi sides.

��
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��
��
��
��

��
��
��
��
��
��
��

��
��
��
��
��
��
��

��
��
��
��
��
��
��

1 2

4 5

3 6

1 2

6

5

X a

X b

Case 1-a

��
��
��
��
��
��
��
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��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

1 2

4 5 1 2

3 6

X 3 X 6

X 4 X 5

f f

f f

Case 1-b

Figure 3: Configuration with neighbor

2. Case 2: The neighbor cell is not available

In the case shown in Figure 4 (Case 2-a), Xa is replaced by the midpoint of
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the face on which we want to approach the flux (respectively Xb). For the
case shown in Figure 4 (Case 2-b), Xa and Xb are respectively replaced
by the midpoint of the faces which are at the top and in lower part of the
face.

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
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4 1

6 3

5

1 X a

X b

Case 2-a

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

1

3

4

X a

X b

Case 2-b

Figure 4: Configuration without neighbor

Remark 1. The construction of Xc and Xd is same as for Xa and Xb

presented above.

4. Numerical Validation

4.1. Convection Validation Tests

To validate the convection part using the general state law (2), we investigate
the widely used tests in the literature: the shock tube problem introduced by
Gary [13] and the Lax test in Lax [19] in their 3D version. The considered mesh
is 101×11×101 and the domain is the unit cube. The time step is calculated

using the CFL condition: max
1≤k≤3

|λk|
△t

△x
< 1 (λk is the wave-speed, △x =

min |Fi+ −Fi− |, Fi+ , Fi− are two adjacent faces of the cell Mi). At t = 0 datum
are respectively:

shock tube: (ρ,u, p) =

{

1.0, (0, 0, 0), 1.0 if x < 0.5,
0.1, (0, 0, 0), 0.125 if x > 0.5,

(15)
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Lax test: (ρ,u, p) =

{

0.445, (0, 0, 0), 3.528 if x < 0.5,
0.5, (0, 0, 0), 0.571 if x > 0.5.

(16)

Figures 5 and 6 represent the numerical solution in the middle of the cube and
one can see that the expected results are reproduced. However it is clear that
some numerical diffusion appears mainly on the rarefaction. This is related to
Godunov scheme.

The shock tube problem and the Lax test were conducted with the condi-
tions of symmetry on the boundary, in the following the resolution of the half
Riemann problem is tested. We use the initial datum (15) and various bound-
aries conditions on the velocity given by (17) in order to obtain different wave
types. Figures 7 and 8 shows the horizontal velocity profiles and one can see
clearly the effect of the boundary condition

ub =

{

(−0.2, 0, 0)a, (−0.2, 0, 0)b , (−0.9, 0, 0)c, (−0.9, 0, 0)d if x = 0,

(−0.5, 0, 0)a, (0.5, 0, 0)b , (−0.5, 0, 0)c, (0.5, 0, 0)d if x = 1.
(17)

4.2. Diffusion Validation Tests

The diffusion part presented in Section 2 is composed of two systems: the
momentum diffusion (3) (vector case) and heat diffusion (4) (scalar case). The
presented scheme is tested for the two cases.

4.2.1. Scalar Case

For this test, we use the heat equation (18). The considered domain is Ω =
[0, L] × [0, L] × [0, L] with boundary ∂Ω divided in to three parts defined as
follow:

Γ1 =
{

x = 0, (y, z) ∈ R
2
}

, Γ2 =
{

x = L, (y, z) ∈ R
2
}

and Γ3 = ∂Ω\Γ1∪Γ2.































ρCv
∂u

∂t
− k△u = 0 in [0, T ]× Ω,

u(x = 0, y, z, t) = u1 on Γ1,

u(x = L, y, z, t) = u2 on Γ2,

u = u1 +
x
L
(u2 − u1) on Γ3.

(18)
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Density Velocity: ux

Pressure

Figure 5: 3D Gary A. Sod test: Y=0.5, Z=0.5, CFL=0.9, time=0.15

Density Velocity: ux

Pressure

Figure 6: 3D Lax P D test: Y=0.5, Z=0.5, CFL=0.9,time=0.15
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shock-shock (a) shock-rarefaction (b)

Figure 7: Velocity profile (Gary A. Sod test): Y=0.5, Z=0.5,
CFL=0.9

rarefaction-shock (c) rarefaction-rarefaction (d)

Figure 8: Velocity profile (Gary A. Sod test): Y=0.5, Z=0.5,
CFL=0.9

The exact solution is given by:

uex(x, y, z, t) = exp
− 12π

L2
k

ρCv
t
sin

2πx

L
sin

2πy

L
sin

2πz

L
+ u1 +

x

L
(u2 − u1).

The plane cut of the different meshes is given in figure 9. We represent in
Figures 10 the exact solution uex and the computed solution ucomp on two
structured meshes 10 × 10 × 10 and 20 × 20 × 20. The solutions computed
on the unstructured meshes (Figure 9) are shown in Figure 11. The obtained
results are similar which give a good accuracy of the our presented scheme.
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Figure 9: 2D cut of meshes: Mesh1 (Left), Mesh2 (Center), Mesh3
(Right)

uex ucomp on 10x10x10 ucomp on 20x20x20

Figure 10: Tests on structured meshes

ucomp on Mesh 1 ucomp on Mesh 2 ucomp on Mesh 3

Figure 11: Tests on unstructured meshes
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4.2.2. Vector Case

In this part we study the error made by our approximation on a vector variable.
The considered domain is the same like in the scalar test but a homogeneous
Dirichlet boundary condition is used. We consider the following problem:

ρ
∂u

∂t
− µ△u− (

µ

3
+ λ)∇(∇ · u) = 0,

and the exact solution is given by

u(t, x, y, z) = exp(−
4π2(3µ + λ

3 )t

L2
) sin(

2πx

L
) sin(

2πy

L
) sin(

2πz

L
)ẽ1.

The numerical relative error is represented in Figure 12 for various time steps
(right) and meshes (left) where h is computed like in the convection resolution
by h = min |Fi+ − Fi− |, Fi+ , Fi− are two adjacent faces of the cell Mi).

log(△t) log(h)

Figure 12: Relative error

4.3. The Natural Convection Test

To validate the numerical method presented in this work to solve the 3D com-
pressible Navier-Stokes system, we present the natural convection numerical
test. The domain and the used mesh are presented in Figure 13-a). For the
boundary conditions, the velocity is taken homogeneous and a temperature gra-
dient is imposed between the left and right (θc = 330 and θh = 340) and ∂θ

∂n
= 0

on the rest of the boundary (adiabatic). In time one can see the evolution of
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the temperature and the velocity through a recirculation of the fluid induced
by the temperature gradient between the two vertical sides. This instability
depends on the dimensionless Rayleigh number (Ray). Figures 13-15 show the
obtained results for various Rayleigh numbers Ray = 103, 104 and 105. This
results are similar to that presented in the benchmark solutions in Jones et al
[17].

a)

Domain and mesh
b) Ray=103 c) Ray=104

Figure 13: Computed velocity field

Ray=103 Ray=104 Ray=105

Figure 14: Contour of the computed temperature
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Ray=103 Ray=104 Ray=105

Figure 15: Isolines of the computed temperature
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[11] R. Eymard, T. Gallouët and R. Herbin, A cell-centred finite volume ap-
proximation for anisotropic diffusion operators on unstructured meshes in
any space dimension, IMA J. of Numer. Analysis, 26 (2006), 326-353.

[12] I. Faille, A control volume method to solve an elliptic equation on two-
dimensional irregular mesh, Comp. Methods in Appl. Mech. and Eng., 100
(1992), 275-290.

[13] A.S. Gary, A survey of several finite difference methods for systems of non-
linear hyperbolic conservation law, J. of Comp. Physics, 2 (1978), 1-31.

[14] V. Girault, P.A. Raviart, Finite Element Approximation of the Navier-

Stokes Equations, Lecture Notes in Math., 749, Springer, Berlin (1981).

[15] R. Glowinski, O. Pironneau, Finite element methods for Navier-Stokes
equations, Ann. Rev. Fluid Mech., 24 (1992), 167-204.

[16] M.Y. Hussaini, C. Canuto, A. Quarteroni and T.A. Zang, Spectral Methods

in Fluid Dynamics, Springer-Verlag, Berlin (1988).

[17] I.P. Jones, P. Thompson, Numerical Solutions for a Comparison Problem

on Natural Convection in Enclosed Cavity, Report 9955, Computer Science
and Sys. Division AERE, Harwell, England, January (1981).
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