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Abstract: We consider a four-parameter short rate model for the evolution
of interest rates. In this model we take normal level of the short rate as an
exponentially weighted average of the past short rates as suggested by Malkiel
[14]. We first derive the differential equation for the price of a zero-coupon
bond under this model. A complete explicit solution of the partial differential
equation is obtained under a suitable simplifying assumption to obtain an ex-
plicit model for the evolution of interest rates. The relevant yield curve is also
obtained. We then consider a most desirable feature of an interest rates model,
incorporating current term structure of interest rates into the model. Again,
a complete explicit solution is obtained together with the yield curve and its
asymptotic behaviour. A well-known previously given model is included and
discussed in the context of our present interest rates model.
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1. Introduction

For the evolution of interest rates, Vasicek [15] was the first to propose a three
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constant-parameter model for the short rate:
dr=a(b—r)dt+ odX, (1.1)

where o is volatility of interest rate and dX is a Wiener process drawn from
a normal distribution with mean zero and variance dt. While Vasicek model
incorporates the property of mean reversion for the predicted interest rates, it
suffers the possibility of giving undesirable negative rates. Cox, Ingersoll and
Ross [5] proposed a short rate model by the stochastic differential equation:

dr=a(b—r)dt+oyrdX, (1.2)

which avoids negative or zero rates provided o? < 2ab. Several other short rate
models have been proposed and studied. Hull and White [10] extended Vasicek
model to include time-dependent parameters. A special case of Vasicek model
was first developed by Dothan [6].

It has been desired for an interest rates model to be able to incorporate into
it current term structure of interest rates. For the purpose, Hull and White [10]
consider a short rate model with time-dependent parameters to incorporate the
current term structure of interest rates. Hull and White [11] proposed another
variation of the short rate model:

dr =10 (t) — ar]dt + odX, (1.3)

where a is a constant, to fit the current term structure of interest rates in the
model. For more discussion of interest rate models and their solutions, see
Black, Derman and Toy [1], Chawla [2], Cox, Ingersoll and Ross [5], Duffie and
Kan [7], Heath, Jarrow and Morton [8], Hughston [9], Klugman [12].

A four-parameter short rate model for the evaluation of interest rates was
studied by Klugman and Wilmott [13]. As in Wilmott et al. [16], consider a
four-parameter random walk model for the short rate of interest described by
the stochastic differential equation:

dr =u(r,t)dt +w(r,t)dX, (1.4)

where
w(r,t) = ar— 8, u(r,t)=(n—9r)+ w(rt).

Complete explicit solutions of the bond pricing partial differential equation,
giving the price of a zero-coupon bond under the short rate model (1.4), have
been given by Chawla [2]. A generalization of an interest rates model in which
the normal level of the short rate is an exponentially weighted average of past
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short rates was suggested by Malkiel [14]. Recently, Chawla [3] gave a general-
ization of the Vasicek model with the suggestion of Malkiel incorporated, called
a generalized Vasicek-Malkiel model for the pricing of zero-coupon bonds.

In the present paper we consider a modification of the four-parameter short
rate model (1.4), introducing a suitable time-dependent parameter to incorpo-
rate Malkiel’s idea of mean level short rate as being the average of past short
rates. We derive the relevant partial differential equation giving the price of a
zero-coupon bond under this modified short rate model. A complete explicit
solution of the partial differential equation is obtained under a suitable simpli-
fying assumption to obtain an explicit model for the evolution of interest rates.
The relevant yield curve is also obtained. We then consider a most desirable fea-
ture of an interest rates model, incorporating current term structure of interest
rates into the model. Again, a complete explicit solution is obtained together
with the yield curve and its asymptotic behaviour. A well-known previously
given model is included and discussed in the context of our present interest
rates model.

2. A Four-Parameter Interest Rates Model
2.1. Incorporating Average of Past Short Rates

In order to incorporate Malkiel’s idea of mean level short rate being the average
of past short rates, we consider a suitable modification of the short rate model
(1.4) as follows. We consider a model for the short rate described by the
stochastic differential equation:

dr =u(r,t)dt +w(r,t)dX, (2.1)
where we take

u(rt) =n+y{0@) —r}, w(rt)=+ar—p,

with «, B, v and 7 constants and where 6 (¢) is an exponentially weighted
average of the past short rates:

t
0(t) = u/ e HE=3)r (5) ds. (2.2)
—00
Here, u is a parameter, 1 > 0, and the differential equation form for (2.2)
is

df = p(r—=0)dt =wv(r,0)dt, say. (2.3)
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Let V (t,T;r,0), or simply V (¢,T), denote the price of a zero-coupon bond
at time ¢ with maturity 7', ¢ < T, and final value V (T,T) = Z. A measure of
future values of interest rates is the yield curve. With

Y (4,T) = —%En <%> , (2.4)

where 7 = T — t is time to maturity, plot of Y against 7 is called the term
structure of interest rates. From (2.4) it is clear that, for fixed t, interest rate
implied by the yield curve is:

1 0

P =P (T) = S (T - 0Y (1)) =~

— V,T). (25

Whenever a function F' (¢,7T) is a function of 7 only we shall write F' (¢,T) =
F (7).

Following arguments given in Wilmott et al. [16] extended to the present
case and using no-arbitrage arguments, for the value of a zero-coupon bond
V(t,T),

%—‘;—F%wQ%QT‘Q/—FU%—‘@/ —rV
ov/or ’

must be independent of maturity 7', and we set

v | 1,20%V v
5 t 5w W—I_UW_TV

ot T 3 B
oV /or u(rt),

and so
8_V+l 282_V_|_ 6_V_|_ v _ V=0
at 2V a2z Ty TV TV T

Thus, the bond pricing equation providing the value of a zero-coupon bond
at time ¢ with maturity 7', for our four-parameter short rate model (2.1), is

ov 1 0%V oV
ot talor =B gz +inty0-nl5
ov

We now seek a solution of the bond pricing equation (2.6) in the form:

V(t,T) = ZeA(T)-FTB(T)‘i‘GC(T)’ (27)
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for suitable A (1), B (1) and C (1) as functions of 7. Substituting (2.7) in (2.6)
we have, in terms of 7,

0A 1 oB 1
<_E — 5BBQJrnB> + 7 <_E —|—§aB2 — B+ uC — 1>

oC
0 ——— B—uC | =0. 2.8
+0 (=5 +98 - aC) (2.8

Since the coefficients of 1, » and 6 must separately be zero, we obtain
the following simultaneous set of three ordinary differential equations for the

determination of A (7), B (1) and C (7):

0A 1
B 1
‘2—7 = EaB2 — B+ uC —1, (2.10)
oC
i B — nC. (2.11)

Note that, for 7 =0, A(0) = B(0) = C(0) =0.
Now, in order to be able to find a solution of the above differential equation
system, we make a simplifying assumption that

C(r)=m(B(r), (2.12)
for a suitable constant m. Substituting from (2.12) in (2.11) we have

OB  p Y
— +—-B=— 2.13
or + 2 om’ ( )

and substituting from (2.12) in (2.10) and setting

«

= —— 2.14
m=—g (2.14)
we get
0B
—-— B =-1 2.15
or 7 (2.15)

For a consistent solution B (7) of (2.13) and (2.15) we must have

=B T _ (2.16)
m

[\
DO
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The solution of (2.14) and (2.16) in terms of « is

1 |a
p=Vaa g =5 m= 55
For finding B (7), equation (2.15) is a first-order linear ordinary differential

equation whose solution is given by

B(r) = —% (1—e). (2.17)

To find A (1), from (2.9) we have

A(r) =nh(r) - %5—72 (1), (2.18)

_/OTB(s)ds, L (T)_/OT (B (5))° ds.

where we have set

Since
from--tf-emya- 2 (er )
s)ds = —— —e Plds=——|s+ ,
7 7 Y
therefore
L) =—2(r+B())
Again, since
1
/(B(s))st = = (1—2e77 +e72%) ds

= % (2’)/8 + 4e7 7% — _275) ,

therefore
L= (r+BO -5 BO)).

With these results, from (2.18) we obtain

A(r) = -1 <n+%) (r+ B(r) +

B (B2
. o (B, (2.19)
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Thus, the price of a zero-coupon bond by our present four-parameter short
rate model (2.1) is given by (2.7) where A (7) is given by (2.19), B (7) is given
by (2.17) and C (7) is given by (2.12).

The yield curve for the present bond pricing model, from (2.4) and (2.7), is

Y (4,T) = — “[A(r) + B (r) +0C (7).

Substituting for A (7 ) and C (1), we obtain the yield curve given by

) B(
Y (1, T) = [_< ;)T—I—B )+ 1B ()

) e 0]
+{6m—— | (B(r . (220
(6m- L) B0y 20

Since, for 7 — oo, B (1) ~ —%, @ ~ 0, the asymptotic behaviour of the
yield curve (2.20), for 7 — oo, is

Y (t,T)~ ,1y(77+ B) (2.21)

2y

We next consider the following particular case.
2.2. The Case 8 =0, o = o2

This is a well-known special case of the four-parameter random walk for the
short rate (1.4) considered by Cox, Ingersoll and Ross [5]. For this case, in our
case with the random walk (2.1) for the short rate,

1 1

= —0, Mm=——=0,
RN 272

and, while B (7) and C (7) remain the same as above, A (7) simplifies to the
following;:

A(r) = —g(T—FB(T)).
The yield curve is now given by

V(1) =2 L+ B(r)+ 7B () +6m (B ()]

with the asymptotic behaviour,

Y (t,T) ~ L.

y
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3. Incorporating Current Yield Curve
Into Present Interest Rates Model

A most important feature of an interest rates model is that it should be con-
sistent with current term structure of interest rates in the market. For the
purpose of incorporating current yield curve into our present four-parameter
interest rates model, we now regard 7 as a function of time, n = 7 (), and use
it for the purpose.

Treating n =7 (t), from (2.9) we have

O = w0 BT 1)+ 3B (B(T 1)),

Since A (0) = 0, integrating from 7" to ¢,

T
AT :/t n(s)B(T—s)ds—%ﬁI(t,T), (3.1)
where have set .
I(t,T)= / (B(T — s))* ds.

To fit the yield curve at time ¢ = 0, with the notation that for any function
¢ (t,T): ¢o(T)=¢(0,T), the initial yield curve is

Yo (T') = == [Ao (T) + r0Bo (T') + 00Co (T)] , (3.2)

1

T
where ro = 7(0), 8p = 6(0). Substituting for B (T — s) from (2.17) and for
Ao (T) from (3.2) in (3.1), we get

T
/ n(s) (1 e ) ds =4y (7). (3.3)
0
where we have set
Fo(T) = Yo (T) T+ roBy (T) + 80Co (T) — 3810 (T) . (3.4)

Equation (3.3) is an integral equation for the determination of 7 (s). To
solve it, we differentiate (3.3) with respect to 7" and using the rule:

%/axf(s,x)dsz/ax% (s,2)ds + f (z,2) | (3.5)
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we get
T
/ n(s)e " T=9ds = F} (T). (3.6)
0

Adding (3.3) and (3.6) we have

T
| nds =vr @)+ Fy(). (3.7)

Differentiating (3.7) with respect to 7" and again using the rule (3.5), we

finally get
n(T) =vF (T) + Fg (T). (3-8)

This determines 7 (7).
To find corresponding A (t,7T'), we go back to (3.1), substitute for 7 (s) from
(3.8) to have
g

AtT)=1J (taT) - 51 (th) ) (39)
where we have set

T
J(t,T)—/t n(s) B(T — s)ds.

To calculate J (¢,T"), substituting for n (s) from (3.8) we have

T T
J(t,T):'y/t Fé(s)B(T—s)ds—i—/t F{/ (s) B(T — s)ds.

Since

0

—B

0s
integrating the second integral by parts we obtain

(T —s) = e T3,

T
JtT) = /t Fl(s) [’yB(T—s)—e‘V(T_S)] ds — F (t) B (1)

T
_ —/t Fi(s)ds — F} () B(7).
Thus,
J(t,T) =~ [F(T) - Fo (t)] — Fy (t) B (7). (3.10)
With (3.10), from (3.9) we get

ALT) =~ [Fo (1)~ Fo ()] - B ()B() - S1(6,7).  (3.11)
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We now calculate

T 1 T
I(t,T)= /t (B(T - s))2 ds = ? /t (1 —2eV(T=s) 4 eiQV(T*S)) ds.

Performing the integration and rearranging the terms we obtain
1
1(,7) = [T +B(r) - 2B (T))Q] . (3.12)
We define forward yield at time t = 0 by

L v (1) T - Yo (1)1].

T

/ (th) =

From (3.4) we calculate

1
Fo(T)—Fo(t) = f(t, )T +1oB* (t,T) + 0C* (t,T) — 56[* (t,T), (3.13)
where we have set

B*(t,T) = Bo(T)—Bo(t), C*(t,T) =Co(T) = Co (1),
I"(t,T) = Iy(T)—1Io(t).

With (2.17) it is easy to see that
B*(t,T)=e "B (7).
With (2.12) and (2.17) we calculate

C*(tT) = m|(Be ()~ (Bo (1))?]

= DB [2 (- ) 4 B ()],

Again, with (3.12) we calculate

T =~ [r +e " (2—e ") B(r) - % (7B (T))Q] :

2
With the above results, from (3.13) we obtain
2me
R (1)~ Fo (0 = [F.7) = g | 7 [ro - 222 (1= )
2y gl
B

_W (2 _ e—vt)} e "B (1) + (meo + ﬁ) (e‘”tB (T))Q. (3.14)
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To calculate Fj (t), from (3.4) we have

F§(T) = Yo (T) T) 4+ 0B} (T) + 60Ch (T) — 5674 (T).

But from (2.5),

(N T]=r (0.7,

from (2.17),
By(T) = —e 7,

from (2.12) and (2.17),

C4(r) = o [m(Bo ()] = 2mBo (7) B (1)

= —2me "TBy(T),

and from (3.12),

(T = S [T+ Ba (@) = (Bo(T)?
= (B (1))
Therefore,
Fi(t) =7 (0,t) — roe™ " — 2mbpe " By (t) — g (Bo (1)), (3.15)

With (3.12), (3.14) and (3.15), from (3.11) we finally have

A, T)=—f(t,T)r—r(0,t) B(r)

— meoe—w—%u—e—%t) (B(1))*. (3.16)

With this A (¢,T), the value of a zero-coupon bond by our present four-
parameter interest rate model (2.1), with the initial term structure of interest
rates incorporated at time ¢ = 0, is given by (2.7) where the values of B (¢,T")
and C (t,T) are as given before.

Now, from (2.4) the yield curve for the present case is

1
Y (t,T)=—=[A(7)+rB(r)+60C(7)].

T
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Substituting for A (¢,T") from (3.16) and for B (¢,T) and C (t,T) as given
before, the yield curve for the present case is

Y (6,T) = f(&,T)+[r (0,t) — 1] BY)
- % (1= ™) m (6= 6™ w. (3.17)

For asymptotic behaviour of the yield curve for 7 — oo, since

_1 B
B(r)~— ="~
therefore
Y (t,T)~ f(t,T). (3.18)

Also, for t =0, from (3.16) we have
A0,T) = —f(0,T)T —roBo (T) — mby (By (T))°
= —Yb (T) T— ToBO (T) - 0000 (T) ;
giving

Yo (T) = —— [Ao (T) +10Bo (T) + 60Co (T)] , (3.19)

1
T
as it should so that our present interest rates model produces and is consistent
with the initial term structure of interest rates observed in the market.

We again consider the following particular case.

4. The Case 3 =0, a = o2

As noted above, this is the well-known case of the four-parameter random walk
(1.4) for the short rate considered by Cox, Ingersoll and Ross [5]. For this case,
in our case with the random walk (2.1) for the short rate, while B (7) and C (1)
remain the same as given before, A (t,T") simplifies to

A(t,T)=—f(t,T)r —r(0,t) B(1) — mboe 2" (B (1)) . (3.20)
The corresponding yield curve from (3.17) simplifies to
B(7)

T

Y (t,T) = f(t,T)+ [r(0,t) —r] —m (0 — Ope™ ") w, (3.21)

while the asymptotic behaviour of the yield curve remains the same as in (3.18).
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