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Abstract: In the present investigation, we introduce some new subclasses
of analytic-univalent functions and determine the sharp upper bounds of the
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AMS Subject Classification: 30C45

Key Words: analytic functions, starlike functions, convex functions, close to
convex functions, starlike functions with respect to symmetric points, close-to-
convex functions with respect to symmetric points, Hankel determinant

1. Introduction, Definitions and Preliminaries

We let A to denote the class of functions analytic in U and having the power
series expansion

flz)=2z+ Z an 2" (1)
n=2

in the unit disc U = {z : |2| < 1}. Let S be the class of functions f (z) € A and
univalent in U.
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The ¢ Hankel determinant of f for ¢ > 1 and n > 1 was defined by
Pommerenke [27, 28] as

Qp An+1 " OGpig-1
an4+1  Gpy2 <0 An+tq
An+q—1 On4q ~°°  Gn42¢-2

This determinant has been considered by several authors in the literature,
see [24]. For example, Noor [25] determined the rate of growth of H, (n) asn —
oo for functions in U with bounded boundary. Later, Ehrenborg [7] considered
the Hankel determinant of exponential polynomials. The Hankel transform of
an integer sequence and some its properties were discussed by thoroughly by
Layman in [15].

Also, the Hankel determinant was studied by various authors including
Hayman [12] and Pommerenke [29]. Easily, one can observe that the Fekete-
Szego functional is Hs (1). Then Fekete-Szego further generalized the estimate
lag — pa3|, where p is real and f € U. Ali [2] found sharp bounds on the first
four coefficients and sharp estimate for the Fekete-Szegd functional. For the
discussion in this paper, the Hankel determinant for the case ¢ = 2 and n = 2
are being considered

a2 a3
az a4

Janteng, Halim and Darus [14] have determined the functional ‘a2a4 — a%! and
found a sharp bound for the functions f in the subclass RT of U, consisting of
functions whose derivative has a positive real part studied by Mac Gregor [18].
In their work, they have shown that if f € RT then ‘a2a4 — a%‘ < %.The same
authors[12] also obtained the second Hankel determinant and sharp bounds
for the familiar subclasses namely, starlike and convex denoted by ST and
CV of U and have shown that ‘a2a4 - ag‘ < 1 and ‘a2a4 - a§| < %, respec-
tively. Mishra and Gochhayat [21] have obtained sharp bound to the non-linear
functional ‘a2a4 — ag‘ for the class of analytic functions denoted by R) (a, p)
(0<p<1,0<A< 1o <3).

Similarly, the same coefficient inequality was calculated for certain sub-
classes of analytic functions by many authors, see e.g. [1], [3], [4], [9-11], [21],
[22], [29], [31-39].

Motivated by the above mentioned results obtained by different authors in
this direction, we seek upper bound of the function ‘ag — ,ua%! for functions
belonging to the defined classes.
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A function f (z) € A is said to be in the class RST(a) (o > 0) in U, if it
satisfies the condition:

2f'(2)
f(2)

This class was studied by D. Vamshee Krishna and T. Ramreddy. It is observed
that for « = 0 and a = 1 in (2), we respectively get RST(0) = ST and

Re [af’(z) +(1-a) ] >0, VzeU. (2)

RST(1) = RT.
C () denotes the subclass of functions f (z) € A satisfying the condition
2 ’(Z)]
Relaf'(z)+(1 -« > 0, 3
s+ - L Q
where -
g(z) =2+ bp2" €S (4)

n=2

In particular,
1. C(1) = RT,
2. C(0) = CC, the class of close-to-convex functions.

Let C. () be the subclass of functions f (z) € A, satisfying the condition

Re [af/(z) +(1-a) Z}{(S)] >0, (5)
where -
h(z)=z+) dp2" €K (6)

n=2

We have the following obvious observations:
1. ¢, (1) = RT,
2. CL(0)=C".

2 denote the subclass of functions f (2) € A satistying the condition

Re |af'(z)+ (1 —a) (%)} > 0. (7)

The following observations are obvious:
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1. ¢V = Rr,

2. Cs e S7, the class of starlike functions with respect to symmetric points
introduced by Sakaguchi [33].

Let C¢ be the subclass of functions f (z) € A, satisfying the condition

Re [af’(z) +(1-a) (LZ)Z))} >0, (8)

9(2) —g(—
where
g(z) =2+ bp2" €S (9)
n=2

In particular,
1. C! = RT,

2. CY = (4, the class of close-to-convex functions with respect to symmetric
points introduced by Das and Singh [6].

Let Cf(, be the subclass of functions f (z) € A, satisfying the condition

Re [af’(z) +(1—a) (%)] >0, (10)

where

h(z):z—i—idnznel(s. (11)

n=2

We have the following obvious observations:

1. cﬁg) — RT,
0 _
2. ) =CL.
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2. Preliminary Results

Let P be the family of all functions p analytic in U for which Re (p (z)) > 0 and
p(z)=1+piz+p2+.--, V2eU. (12)
Lemma 2.1. ([26],[30]) |px| <2, (k=1,2,3,...).
Lemma 2.2. Ifp € P, then

2py = pi + (4 —p}) z,

4ps :p:{’—i—Qpl (4—p%):c—p1 (4—p%)x2+2(4—p%) (1— |x|2> z,
for some = and z satistying |z| < 1 and p; € [0,2].

This result was proved by Libera and Zlotkiewiez [15,16].

3. Main Results

Theorem 3.1. If f(z) € C(«), then

(3—a)’

- (13)

|a2a4 — a%! <

Proof. Since C’S(a) denotes the subclass of functions f (z) € A, satisfying the
condition (8), so
2f'(2)

0f (2) + (1) 5 = p(2). (14

where

g(z)=z+ Z by2" € S (15)
n=2
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On equating the coefficients of z, 22 and 23 in the expansion of (14), we have

( by (1 —a
a2:&+72( )

2 2
1 — @) (2a9by + b3 — b3
a3:12+( a)(a22 3 2) (16)
2 2
D3 (1 — a) (3a3b2 + 2a9bg + by — 2a2b§ — 2bobs + b%)
a4 = — +
\ 4 4
From (15), we can easily verify that
p2 + p} ps  pip2 Py
by = p1,b3 5> b 3+2+6
So (16) yields
( 2 -«
ag= ( 5 ) 1
_ _ _ 2
a3= (3 04) P2 4 (1 a) (3 — 2a) P1 ) (17)
6 6
" (4= a)p3 N (1—a)(2—a)pipe N (1—a) (30z2 —6a+2)p‘i’
(M7 12 4 12
Using (17) yields
asay — ag
3(2—a)(4—a)pips
1| +19(1—«) (2—a)2_4(1—a) (3—a) (3—204)] Pipe a8)

72| +[3(1—a) (2—a) (3a2—6a + 2)—2(1—a)’ (3—2a)2] P
—2(3—a)? p3

Using Lemma 2.1 and Lemma 2.2 in (18), we have

‘a2a4—a§‘:%“3(2—@(4—&)—#2&2(1—@)

—4(1—a) (o® — 4a* +6) —2(3_04)2]19411
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—[—6(2—(1)(4—&)—2&2(1—a)—4(3—04)2]])% (4—p%)x
— [3(2—@)(4—(1)1)%—}—2(3—@)2 (4—p%)] (4—p%)x2

+6(2—a)(4—a)p1 (4 —pi) (1 - |:c|2> z}.

Assume that p; = p and p € [0, 2], using the triangular inequality and |z| < 1,
we have

‘a2a4 — ag‘

1

S@“3(2-@)(4—@)+2a2(1_a)_4(1_a)(a3_4a2+6)

~2(3 - a’|p*+ [-6(2-a) (4~ a) — 207 (1 - a)
~4(3 - a)’| p? (4-p?) Jal
+[3e-a0)@-a)pP+26-a)? (4-p)| @-p) P
62— a)(4—a) (4= p(1-[2P) ],

‘a2a4 — ag‘
1

g%“3(2—04)(4—&)—1—2&2(1—04)—4(1—a)(a3—40z2+6)

—2(3—a)2]p4+6(2—a)(4—a)p(4—p2)
+[—6(2—a)(4—a)—2a2(1—a)—4(3—a)2]p2 (4-p?) 6
+[32-a)d-a)p*—6(2—a)(d—a)p
+2(3 - a)’ (4-p%)| (4-p?) 7.
Therefore
asas — a3 < S (6).
where § = || < 1 and

F()=[3B2-a)d—a)+2a°(1—-a)-4(1 —a)(a® - 4a® +6)

—2(3—04)2]]74—1—6(2—04)(4—a)p(4—p2)

—I-[—6(2—04)(4—04)—2a2(1—a)—4(3—a)2]p2 (4—p*) 6
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+[B32-a)d-a)p*—6(2—a)(4—a)p
+2(3-a)’ (4= %) (4= 1) ]
is an increasing function. Therefore MaxF' (0) = F (1).

Consequently,

1
lasas — a3 < @G (p), (19)

where G (p) = F' (1). So,

G(p) = A(a)p* —4B (o) p* +32(3 — )?,

where
A(a) =2 (20" — 120% + 150% — 18a + 30) ,
and
B(a) = (—2a® + 13a” — 66a + 96) ,
Now
G’ (p) = 4A(a)p’ — 8B (a) p
and

G" (p) = 124 (@) p* — 8B (a)

then G’ (p) = 0 gives
p[4A () p® — 8B (a)] = 0.

G" (p) is negative at

_\/ 96 — 66a + 1302 — 203
PV 30— 1Ba+ 1502 — 1203 + 201~ 7
So MaxG (p) = G (p'). Hence from (19), we obtain (3.1). O

The result is sharp for py = p/, ps = pi — 2 and p3 = p1 (pf — 3).
For a = 1 and a = 0 respectively, we obtain the following results:

Corollary 3.2. Ifg(z) € RT, then

S

|a2a4 — a%! < §

Remark 3.3. For the choice of o« = 1, the result coincides with those of A.
Janteng, S.A. Halim and M. Darus ([12],[13]).
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Corollary 3.3. Ifg(z) € CC, then

|a2a4 — a§| <1.
Theorem 3.4. If f € C, («), then
|a2a4 — a§| <

The result is sharp for p; = p/, p» = p} — 2 and p3 = p1 (p} — 3).

For a = 1 and a = 0 respectively, we obtain the following results:

Corollary 3.5. Ifh(z) € RT, then

O =

|a2a4 — a§| <

Corollary 3.6. Ifh(z) € C’, then

49

‘a2a4 — a§| < @

4. Functions with Respect to Symmetric Points

Theorem 4.1. If f € Ci(a), then

S

|a2a4 — a§| < 9

The result is sharp for p; = 0,ps = —2 and p3 = 0.

For a = 1 and a = 0 respectively, we obtain the following results:

Corollary 4.2. If f(z) € RT, then

o

|a2a4 — a§| < 9

Corollary 4.3. If f(z) € S%, then

O

|a2a4 — a% <

45

(20)
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Theorem 4.4. If C¢, then

N2
|a2a4 — a%! < %. (22)
The result is sharp for p; = 0,ps = —2 and p3 = 0.
For a =1 and a = 0 respectively, we obtain the following results:
Corollary 4.5. Ifg(z) € RT, then
4
|a2a4 — a§| < 9
Corollary 4.6. If g(z) € S*, then
|a2a4 — a§| <1.
Theorem 4.7. If Clo‘(s), then
(7—a)?
|a2a4 — CL§| S T (23)

The result is sharp for p; = 0,ps = —2 and p3 = 0.
For a =1 and a = 0 respectively, we obtain the following results:

Corollary 4.8. Ifh(z) € RT, then

S

|a2a4 — a§| < —.

Corollary 4.9. Ifh(z) € C., then
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