International Journal of Applied Mathematics

Volume 28 No. 1 2015, 23-28

 $ISSN:\ 1311\text{-}1728\ (printed\ version);\ ISSN:\ 1314\text{-}8060\ (on\mbox{-line}\ version)$

doi: http://dx.doi.org/10.12732/ijam.v28i1.2

A GENERALIZATION OF CONVEX FUNCTIONS

Donka Pashkouleva

Institute of Mathematics and Informatics
Bulgarian Academy of Sciences
Acad. G. Bonchev Str., Block 8, Sofia, 1113, BULGARIA

Abstract: The object of this paper is to obtain sharp results involving growth and distortion properties for the classes V_k and C_k^* of analytic functions in the unit disk.

AMS Subject Classification: 30C45

Key Words: univalent functions, convex functions

1. Introduction and Definitions

Let S denote the class of functions of the form

$$f(z) = z + \sum_{k=2}^{\infty} a_k z^k$$

which are analytic and univalent in the open unit disk $E = \{z : |z| < 1\}$.

Let C denote the class of convex functions:

$$f(z) \in C$$
 if and only if for $z \in E, \Re\left\{1 + \frac{zf''(z)}{f'(z)}\right\} > 0.$

For $k \geq 2$, denote by V_k the class of normalized functions of bounded boundary rotation at most $k\pi$. Thus $g(z) \in V_k$ if and only if g(z) is analytic in $E, g'(z) \neq 0, g(0) = g'(0) - 1 = 0$ and for $z \in E$:

$$\int_0^{2\pi} \left| \Re \frac{(zg'(z))'}{g'(z)} \right| d\theta \le k\pi. \tag{1.1}$$

Received: October 25, 2014

D. Pashkouleva

It is known [1] that for $2 \le k \le 4$, V_k consists only of univalent functions (in fact, close-to-convex functions). This is another definition of the class V_k . For fixed k, let V_k denote the class of functions g(z) normalized so that

$$g(z) = z + \sum_{n=2}^{\infty} b_n z^n$$

which are analytic in E and have an integral representation of the form

$$g'(z) = \exp\left\{\frac{1}{\pi} \int_0^{2\pi} \log\left(1 - ze^{-it}\right)^{-1} d\mu(t)\right\},\tag{1.2}$$

where $\mu(t)$ is real-valued and bounded variation on $[0, 2\pi]$ with

$$\int_{0}^{2\pi} d\mu(t) = 2\pi,$$

$$\int_{0}^{2\pi} |d\mu(t)| \le k\pi.$$
(1.3)

The representation formula (1.2) together with (1.3) is due to Paatero [1] and is equivalent to the definition (1.1) for $g(z) \in V_k$.

In 1917, Lowner [2] was the first to consider functions of bounded boundary rotation. Later, Paatero [1, 3] made an exhaustive study of the class. The function $g_k(z)$ defined for $z \in E$ by

$$g_k(z) = \frac{1}{k} \left[\left(\frac{1+z}{1-z} \right)^{\frac{k}{2}} - 1 \right] = \sum_{n=1}^{\infty} B_n(k) z^n$$
 (1.4)

belongs to V_k and is extremal for many problems.

Paatero [1] proved sharp distortion theorems for $g(z) \in V_k$.

Let f(z) be analytic in E, $f'(0) \neq 0$ and normalized so that

$$f(0) = 0, \quad f'(0) = 1.$$

Then, for $k \geq 2$, $f(z) \in T_k$ if there exists a function $g(z) \in V_k$, such that for $z \in E$

$$\Re \frac{f'(z)}{g'(z)} > 0. \tag{1.5}$$

Clearly $T_2 = K$, the class of close-to-convex functions.

We now define a new subclass C_k^* which has the same relationship with T_k as C has with S^* (the class of starlike functions).

Let f(z) be analytic in E and normalized so that f(0)=0, f'(0)=1 and $f'(z)\neq 0$. Then $f(z)\in C_k^*$ $(k\geq 2)$ if there exists a function $g(z)\in V_k$ such that for $z\in E$

$$\Re\frac{(zf'(z))'}{g'(z)} > 0. \tag{1.6}$$

Clearly, $C_2^* = C^*$, the class of quasi-convex functions [5].

It follows easily from definition (1.6) that

$$f(z) \in C_k^*$$
 if and only if $zf'(z) \in T_k$. (1.7)

Let us consider the function

$$F_k(z) = \frac{1}{k+2} \left[\left(\frac{1+z}{1-z} \right)^{\frac{k}{2}+1} - 1 \right] = z + \sum_{n=2}^{\infty} A_n(k) z_n.$$
 (1.8)

It is then easy to show that [7], $F_k(z) \in T_k$.

2. Known Results

Theorem 2.1. (see [1]) If $g(z) \in V_k$, then for $z = re^{i\theta} \in E$

$$\frac{1}{k} \left[1 - \left(\frac{1-r}{1+r} \right)^{\frac{k}{2}} \right] \le |g(z)| \le \frac{1}{k} \left[\left(\frac{1+r}{1-r} \right)^{\frac{k}{2}} - 1 \right]$$

$$\frac{1}{1-r^2} \left(\frac{1-r}{1+r} \right)^{\frac{k}{2}} \le g'(z) \le \frac{1}{1-r^2} \left(\frac{1+r}{1-r} \right)^{\frac{k}{2}}.$$

The function $g_k(z)$ defined for $z \in E$ by

$$g_k(z) = \frac{1}{k} \left[\left(\frac{1+z}{1-z} \right)^{\frac{k}{2}} - 1 \right] = \sum_{n=2}^{\infty} B_n z^n$$

shows that these inequalities are sharp.

Theorem 2.2. (see [6]) Let $g(z) \in V_k$ and $\xi \in E$. Then $F(z) \in V_k$, where F(z) is given by

$$F(z) = \frac{g\left(\frac{\xi+z}{1+\overline{\xi}z}\right) - g(\xi)}{g'(\xi)\left[1 - |\xi|^2\right]}.$$

D. Pashkouleva

Theorem 2.3. (see [7]) Let $f(z) \in T_k$, then for $z = re^{i\theta} \in E$

$$\frac{(1-r)^{\frac{k}{2}}}{(1+r)^{\frac{k}{2}+2}} \le |f'(z)| \le \frac{(1+r)^{\frac{k}{2}}}{(1-r)^{\frac{k}{2}+2}}.$$

These bounds are sharp, equality being attained for the functions $F_k(z)$ defined by

$$F_k(z) = \frac{1}{k+2} \left[\left(\frac{1+z}{1-z} \right)^{\frac{k}{2}+1} - 1 \right].$$

3. Some of the Basic Properties of Functions in the Classes V_k and C_k^*

Theorem 3.1. Let $g(z) \in V_k$, then for $z = re^{i\theta} \in E$

$$\frac{k(1-r)^{\frac{k}{2}-1}}{(1+r)^{\frac{k}{2}+1}\left[1-\left(\frac{1-r}{1+r}\right)^{\frac{k}{2}}\right]} \le \left|\frac{g'(z)}{g(z)}\right| \le \frac{k(1+r)^{\frac{k}{2}-1}}{(1-r)^{\frac{k}{2}+1}\left[\left(\frac{1+r}{1-r}\right)^{\frac{k}{2}}-1\right]}.$$

The result is sharp.

Proof. Since $g(z) \in V_k$, Theorem 2.2 shows that F(z) defined by

$$F(z) = \frac{g\left(\frac{\xi+z}{1+\bar{\xi}z}\right) - g(\xi)}{g'(\xi)\left[1 - |\xi|^2\right]}$$
(3.1)

is in V_k , when ξ is any arbitrary point in E. Thus, with $z = -\xi$ we obtain

$$F(-\xi) = \frac{-g(\xi)}{g'(\xi) \left[1 - |\xi|^2\right]}.$$
(3.2)

Now, using the distortion Theorem 2.1 for $g(z) \in V_k$, we obtain

$$\frac{1}{k} \left[1 - \left(\frac{1 - |\xi|}{1 + |\xi|} \right)^{\frac{k}{2}} \right] \le |F(-\xi)| \le \frac{1}{k} \left[\left(\frac{1 + |\xi|}{1 - |\xi|} \right)^{\frac{k}{2}} - 1 \right]$$

and so (3.2) gives

$$\frac{1}{k} \left[1 - \left(\frac{1 - |\xi|}{1 + |\xi|} \right)^{\frac{k}{2}} \right] \le \left| \frac{-g(\xi)}{g'(\xi)(1 - |\xi|^2)} \right| \le \frac{1}{k} \left[\left(\frac{1 + |\xi|}{1 - |\xi|} \right)^{\frac{k}{2}} - 1 \right],$$

that is

$$(1 - |\xi|^2) \frac{1}{k} \left[1 - \left(\frac{1 - |\xi|}{1 + |\xi|} \right)^{\frac{k}{2}} \right] \le \left| \frac{g(\xi)}{g'(\xi)} \right| \le \frac{1}{k} \left[\left(\frac{1 + |\xi|}{1 - |\xi|} \right)^{\frac{k}{2}} - 1 \right] (1 - |\xi|^2).$$

Since ξ is an arbitrary point in E, the result follows.

Remark. We note that when k=2 we obtain the classical distortion theorem for the class C of normalized convex functions.

Theorem 3.2. Let $f(z) \in C_k$, then for $z \in re^{i\theta} \in E$ and $k \ge 2$:

$$\frac{1}{k+2} \left[1 - \left(\frac{1-r}{1+r} \right)^{\frac{k}{2}+1} \right] \le \left| zf'(z) \right| \le \frac{1}{k+2} \left[\left(\frac{1+r}{1-r} \right)^{\frac{k}{2}+1} - 1 \right],$$

$$\frac{1}{k+2} \int_0^r \left[1 - \left(\frac{1-t}{1+t} \right)^{\frac{k}{2}+1} \right] \frac{dt}{t} \le |f(z)| \le \frac{1}{k+2} \int_0^r \left[\left(\frac{1+t}{1-t} \right)^{\frac{k}{2}+1} - 1 \right] \frac{dt}{t}.$$

Proof. Since $f(z) \in C_k^*$, (1.7) shows that $zf'(z) \in T_k$. Thus, from Theorem 2.3,

$$\frac{1}{k+2} \left[1 - \left(\frac{1-r}{1+r} \right)^{\frac{k}{2}+1} \right] \le \left| zf'(z) \right| \le \frac{1}{k+2} \left[\left(\frac{1+r}{1-r} \right)^{\frac{k}{2}+1} - 1 \right]. \tag{3.3}$$

Integrating the right-hand inequality in (3.3) from 0 to z, we obtain

$$|f(z)| \le \int_0^{|z|} |f'(z)|d|z| \le \frac{1}{k+2} \int_0^r \left[\left(\frac{1+t}{1-t} \right)^{\frac{k}{2}+1} - 1 \right] \frac{dt}{t}.$$

In order to obtain a lower bound for |f(z)|, we proceed as follows. Let z_1 be such that $|z_1| = r$ and $|f(z_1)| \le |f(z)|$ for all z with |z| = r. Writing $\omega = f(z)$, it follows that the line-segment λ from $\omega = 0$ to $\omega = f(z)$ lies entirely in the image of f(z). Let L be the pre-image of λ . Then

$$|f(z)| \ge |f(z_1)| = \int_{\lambda} |d\omega| = \int_{L} \left| \frac{d\omega}{dz} \right| |dz| \ge \frac{1}{k+2} \int_{0}^{r} \left[1 - \left(\frac{1-t}{1+t} \right)^{\frac{k}{2}+1} \right] \frac{dt}{t}.$$

Then, the theorem follows. The function Φ defined by

$$\Phi(z) = \frac{1}{k+2} \int_0^z \left[\left(\frac{1+t}{1-t} \right)^{\frac{k}{2}+1} - 1 \right] \frac{dt}{t}$$

shows that equality can occur.

28 D. Pashkouleva

References

- [1] V. Paatero, Über die Konforme Abbildung von Gebieten deren Ränder von Beschränkter Drehungsind, Ann. Acad. Sci. Fenn. Ser. A, 33 (1931), 1–78.
- [2] K. Löwner, Untersuchungen über die verzerrung bei Konformen Abbildungen des Ein heitskreises |z| < 1, Leipzig Berichte, **69** (1917), 89–106.
- [3] V. Paatero, Über Gebiete von Bescharänkter Randdrehung, Ann. Acad. Sci. Fenn. Ser. A, 37, No 9 (1933).
- [4] I. K. Noor, On close-to-convex and related functions. *PhD Thesis*, University of Wales (1972).
- [5] I. K. Noor and D. K. Thomas, On quasi-convex univalent functions. Int. J. Math., 3 (1980), 225–266.
- [6] M. S. Robertson, Coefficients of functions with bounded boundary rotation, Canad. J. Math., 21 (1969), 1477–1482.
- [7] I. K. Noor, On a generalization of close-to-convexity, Int. J. Math., 2 (1983), 327–334.