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Abstract: We develop a lattice-based model to evaluate European and Amer-
ican plain vanilla options when the underlying asset price is driven by a variance
gamma process. By applying the Lévy-Itô decomposition of the process, we ob-
tain a compound Poisson process made up of a linear drift and the sum of the
jumps taken by the process. A multinomial lattice is derived to approximate
the compound Poisson process and is used as the corner stone to approximate
the evolution of a certain asset price. European and American options are eval-
uated and, because numerical results show monotonic convergence at the rate
of 1/n, we apply a simple two-point Richardson extrapolation and obtain a fast
and accurate pricing model.
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1. Introduction

It is well known that the simple and appealing hypotheses of normally dis-
tributed asset returns behind the celebrated Black-Scholes-Merton model is
not confirmed by several empirical analysis. Specifically, financial econometri-
cians highlight that stock returns typically show skewness and excess kurtosis
leading to empirical distributions with fatter tails than those of a normally
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distributed random variate. The effort of searching for alternative models has
stimulated many researchers for decades. Today, infinite activity pure jump
Levy processes have gained wide popularity and represent effective models to
describe financial asset returns. These models are supported by many empirical
investigations and, among others, we may refer to Carr et al. [3] who found
that statistical and risk-neutral returns of indexes and single equities tend to be
pure jump process with infinite activity and finite variation. Within the class
of pure jump processes with infinite activity and finite variation is the variance
gamma (VG) model proposed by Madan and Seneta [11] and then generalized
by Madan and Milne [10], Madan et al. [8] and Carr et al. [3]. The VG process,
as illustrated in [8], is a three-parameter model that describes the evolution of
a log stock price by generalizing a Brownian motion with constant drift and
volatility. The first parameter is the volatility of the Brownian motion while
the remaining two parameters control the skewness and kurtosis of the process.
Madan et al. [8] build up the VG process by subordinating Brownian motion
with an independent gamma process that represents a random time change.
The rationale under this assumption is that calendar time must not be con-
sidered per se but only in terms of its economic relevance. As a consequence,
periods of financial turmoil speed up the calendar clock while the clock slows
down during periods of normal activity. The transformation between the deter-
ministic calendar time and the random “business time” is obtained by means
of an increasing gamma process.

Except for the case of plain vanilla European options, analytical formulas
are difficult to derive when the log-price of the underlying asset is driven by
the VG process. Hence, numerical methods play an essential role to obtain in
an efficient way accurate estimates of option prices. Monte Carlo simulations
and numerical methods to solve the associated PIDE are the most common
approaches to solving the evaluation problem. Because Monte Carlo methods
are based on simulations that go forward in time, they are very efficient when
dealing with path-dependent European-style contracts. In contrast, for the
evaluation of American options it is straightforward for numerical methods to
solve the associated PIDE because they work backwards in time.1

Lattice based models are very popular for evaluating and hedging deriva-
tive securities when the underlying asset is driven by a diffusion process. In
fact, they are simple and transparent tools that can be easily implemented to
approximate in an efficient way the dynamics of a small number of state vari-
ables. This is the reason why, after the Cox-Ross-Rubinstein models a lot of
binomial and trinomial lattice based algorithms have been proposed in financial

1For a comprehensive analysis of numerical methods for Lévy processes, see [4].
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literature. To the best of author’s knowledge two models based on multinomial
lattices have been proposed to approximate pure jump Lévy processes with in-
finite activity. Kellezi and Webber [6] propose a lattice that approximates the
transition density function but numerical results are not accurate in the case of
American options. Maller et al. [12] (MSS) develop a multinomial tree model
based on a discretization of the Lévy measure of the process and provide a proof
for the convergence of the proposed approximating scheme. The main problem
in constructing a lattice model to approximate a pure jump Lévy processes
with infinite activity is that the process is heavy tailed and a lot of branches
stemming from each node of the tree are needed to capture the probability into
the tails of the distribution. As a consequence, the pricing problem becomes
readily unmanageable from a computational point of view when the number of
times steps increases.

A possible way to obtain fast and accurate prices when applying a discrete
time approximation model is to extrapolate the desired value from those com-
puted with a limited number of time steps. In particular, if a numerical scheme
shows monotone convergence and if the rate of convergence can be calculated,
Richardson extrapolation can be applied to achieve high accuracy with a small
number of time steps. In the case of state variables driven by a geometric Brow-
nian motion Richardson extrapolation has been extensively applied to compute
option prices and sensitivities (see Tian [15], for example).

We propose a lattice-based model that, coupled with a simple Richardson
extrapolation, furnishes a fast method to compute accurate prices for European
and American options under VG dynamics. The starting point of the proposed
model is the Lévy-Itô decomposition of the VG process according to which
it may be decomposed as a sum of two components: the first component is
deterministic and represents the drift of the process while the second component
is stochastic and is given by the sum of its jumps. Because the Lévy measure
of the VG process presents a singularity in the origin, we truncate it in a
small interval centered at zero and approximate the small jumps of the process
with their expectation. Hence, we obtain an approximating process that is a
compound Poisson process with a finite Lévy measure whose intensity and jump
density may be easily derived. At this point, we build up a multinomial lattice,
and the jump density is approximated at each time slice in a way that is similar,
in spirit, to that proposed by Amin [2] to approximate jump diffusion processes.
Extensive numerical experiments show a virtually monotonic convergence with
rate 1/n. Hence, we apply a simple two-point Richardson extrapolation and
obtain fast and accurate estimates of option prices both for European and
American plain vanilla options.
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The rest of the paper is organized as follows. In Section 2, we illustrate
the lattice approximating the VG process. In Section 3, we present numerical
results, while in Section 4, we draw conclusions.

2. The Approximating Multinomial Lattice

We consider a three-parameter VG process (Xt, t ≥ 0) with an initial value zero
and the Lévy measure given by

ν(dx) = κ(x)dx =
exp(θx/σ2)

υ|x| exp

(
− 1

σ

√
2

υ
+

θ2

σ2
|x|
)
dx,

where θ ∈ R, σ > 0 and υ > 0. The characteristic function is

E[exp(iuXt)] = (1− iuθυ +
1

2
σ2υu2)−t/υ.

We recall that when a pure jump Lévy process with characteristic triplet (γ, 0, ν)
has finite variation, by applying the Lévy-Itô decomposition, it may be de-
scribed in the following way:

Xt = bt+

∫

[0,t]×R

xJX(ds × dx) = bt+
∑

s≤t

∆Xs1∆Xs 6=0,

where b = γ−
∫
|x|≤1 xν(dx), JX is a Poisson random measure on [0,∞)×R with

intensity ν(dx)dt and 1A is the indicator function on set A. A VG process has
finite variation and it may be easily shown that γ =

∫
|x|≤1 xν(dx). Moreover,

because the process has finite variation, its small jumps may be approximated
by their expected value; hence, the process Xt may be approximated by the
following compound Poisson process

Xε
t =

∑

s≤t

∆Xs1ε≤|∆Xs| + E

[∑

s≤t

∆Xs1|∆Xs|<ε

]
, ε > 0. (1)

It is convenient now to set A = θ
σ2 and B =

√
θ2+2σ2/υ

σ2 so that the expectation
in equation (1) may be computed as

bε = E

[∑

s≤t

∆Xs1|∆Xs|<ε

]
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=

∫ +ε

−ε
xκ(x)dx =

1

υ

(
e(A−B)ε − 1

A−B
+

e−(A+B)ε − 1

A+B

)
.

By substituting, we obtain an approximating compound Poisson process

Xε
t = bεt+

∑

s≤t

∆Xs1ε≤|∆Xs|,

with finite Lévy measure

νε(dx) = κε(x)dx =

(
eAx−B|x|

υ|x| 1|x|≥ε

)
dx.

The intensity of the compound Poisson process Xε
t may be computed as

U(ε) =

∫

|x|>ε
κε(x)dx =

1

υ

∫

|x|>ε

eAx−B|x|

|x| dx =

1

υ

∫ ∞

ε

1

x
[e(A−B)x + e−(A+B)x]dx =

1

υ
[Ei(ε(A+B)) + Ei(−ε(A−B))],

where Ei(x) =
∫∞
x

e−t

t dt is the exponential integral function evaluated at x.

Moreover, the jump size distribution is f ε(x) = κε(x)
U(ε) .

We are in a position now to build up the multinomial lattice to approximate
the compound Poisson process Xε

t . At first, we divide the time horizon [0, T ]
into n subintervals of equal length, ∆t = T/n. Then, we denote by (i, j) a
generic node of the lattice so that (0, 0) represents the initial node where the
process has a 0-value; (i, 0) represents the lowest node at time i∆t, (i, 1) is the
second lowest node and so on (i = 0, . . . , n). Coherently, Xε(i, j) denotes the
value of the discretized Xε

t process at node (i, j), and the difference between two
consecutive nodes, Xε(i, j + 1)−Xε(i, j) = ∆x, at each time slice is constant.
Then, mu ”up” branches, 1 ”middle” branch and md ”down” branches emanate
from each node of the lattice. Given that the approximating process Xε

t has
valueXε(i, j) at node (i, j), to describe the possible values at the next time step,
we must distinguish the case where the process does not take jumps from that
in which the process jumps up or down. In the first case, the process increases
by a deterministic amount represented by the local drift; hence, it assumes the
value Xε(i, j) + bε∆t. If the process jumps up, it may take one of the mu

possible values Xε(i, j) + bε∆t+ l∆x, l = 1, . . . ,mu, while if the process jumps
downward, it may assume one of themd possible valuesX

ε(i, j)+bε∆t+l∆x, l =
−1, . . . ,−md. In Figure 1, we depict a sketch of the multinomial lattice.
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X ε( i, j )

X ε( i, j ) + bε∆ t + 2∆ x

X ε( i, j ) + bε∆ t + ∆ x

X ε( i, j ) + bε∆ t

X ε( i, j ) + bε∆ t − ∆ x

X ε( i, j ) + bε∆ t − 2∆ x

X ε( i, j ) + bε∆ t − 3∆ x

X ε( i, j ) + bε∆ t − 4∆ x

Figure 1: The multinomial lattice with mu = 2 and md = 4.

Transition probabilities are defined in a similar way, in spirit, to those
derived by Amin [2] in the case of jump-diffusion processes. We observe, at
first, that for a compound Poisson process, the jump probability in an interval
of length ∆t is proportional to the jump intensity plus a higher order term, i.e.,
U(ε)∆t+ o(∆t). The probability of multiple jumps during the time period ∆t
is o(∆t). Hence, the probability of a single jump is U(ε)∆t. We assume that,
in each interval, no multiple jumps occur.

The next step is to approximate the jump size distribution. To do this, we
partition the interval of the jump density (−∞,−ε] ∪ [ε,+∞) into md + mu

subintervals. All but the first and the last subinterval have equal length ∆x
and are centered around a possible node of the lattice, so they are of the form
((l − 1/2)∆x, (l + 1/2)∆x) for l = −md + 1, . . . ,−1, 1, . . . ,mu − 1, and to
guarantee that there is no overlap between such subintervals and the truncation
interval (−ε,+ε), we set ε = ∆x/2. To cover the whole interval where the jump
density is defined, we define the first subinterval as (−∞,−(md − 1/2)∆x) and
the last subinterval as ((mu − 1/2)∆x,+∞). Because we know the density of
the jump size, f ε(x), the probability associated with each subinterval may be
easily computed.

We are in a position now to define the transition probabilities along the
lattice. Given that a jump has occurred in the time interval ∆t, the probability
that the process jumps from Xε(i, j) to Xε(i, j) + bε∆t + l∆x (l = −md +
1, . . . ,−1, 1, . . . ,mu−1) is defined as the probability that the jump size belongs
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to the interval (l−1/2)∆x, (l+1/2)∆x). The probability to jump from Xε(i, j)
to Xε(i, j) + bε∆t+mu∆x is defined as the probability that the jump size falls
into the interval ((mu−1/2)∆x,+∞), and similarly, the probability of reaching
Xε(i, j) + bε∆t − md∆x is defined as the probability that the jump size falls
into the interval (−∞,−(md − 1/2)∆x). The probability that the process does
not jump, i.e., it goes from Xε(i, j) to Xε(i, j) + bε∆t, is 1− U(ε)∆t.

Hence, denoting by qli,j the probability that the process goes from Xε(i, j)
to Xε(i, j) + bε∆t+ l∆x, l = −md, . . . ,mu, the results are the following:

qli,j =





U(ε)∆t
∫ (−md+

1

2
)∆x

−∞ f ε(x)dx, for l = −md

U(ε)∆t
∫ (l+ 1

2
)∆x

(l− 1

2
)∆x

f ε(x)dx, for l = −md + 1, . . . ,−1,

1− U(ε)∆t, for l = 0,

U(ε)∆t
∫ (l+ 1

2
)∆x

(l− 1

2
)∆x

f ε(x)dx, for l = 1, . . . ,mu − 1

U(ε)∆t
∫∞
(mu−

1

2
)∆x f

ε(x)dx, for l = mu.

With a little algebra, one can show that transition probabilities may be
written as

qli,j =





1
υEi((A+B)(md − 1

2)∆x) for l = −md
1
υ [Ei((A+B)(−l − 1

2)∆x)+
−Ei((A+B)(−l + 1

2 )∆x)]∆t, for l = −md + 1, . . . ,−1,
1− U(ε)∆t, for l = 0,
1
υ [Ei((B −A)(l − 1

2)∆x)+
−Ei((B −A)(l + 1

2)∆x)]∆t, for l = 1, . . . ,mu − 1
1
υEi((B −A)(mu − 1

2)∆x) for l = mu.

Because the truncation level ε is proportional to ∆x, the proposed multino-
mial model is such that when the number of time steps increases, the width of
the truncation interval tends to zero so that the convergence of the multinomial
lattice model toward the corresponding target VG process is guaranteed (see
[12] for a proof).

In order to build up an evaluation model based on the discrete approxima-
tion of the VG process described above, we have to develop a discrete approx-
imation of the random evolution of a certain risky stock which influences the
payoff of a generic contingent claim.

Under some risk-neutral probability measure Q, the stock value at a generic
time t > 0 is

St = S0 exp((r − δ)t +Xt − ωt),
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where S0 is the stock price at time t = 0, r is the continuously compounded
risk-free interest rate, δ is a continuous dividend yield, and ω is the compensator
that makes the stock price process a martingale, i.e., EQ(St) = S0 exp((r−δ)t).
The compensator is determined by imposing E

Q(exp(Xt)) = exp(ωt), which
implies ω = − 1

υ ln(1− θυ − σ2υ/2).
The multinomial lattice approximating the evolution of the stock price

has the same structure of the multinomial lattice that discretizes the approx-
imating process Xε

t . Hence, the stock value at a generic node (i, j) will be
S(i, j) = S(0, 0) exp((r − δ)i∆t + Xε(i, j) − ω̃i∆t) with S(0, 0) = S0. The
discrete compensator ω̃ makes the discrete process approximating the underly-
ing asset price evolution a martingale under the risk-neutral probability mea-
sure and is equal to r + 1

T log(V0), where V0 is the price at time t = 0 of a
contingent claim with payoff, at maturity t = T , equal to exp(Xε(n, j)) for
j = 0, . . . , n(md +mu) + 1.

In this framework, the evaluation problem of a derivative security may be
addressed straightforwardly by applying the usual backward induction. Denot-
ing by C(i, j) the value of a European-style contingent claim at a node (i, j) of
the multinomial lattice, it can be computed as follows:

C(i, j) = e−r∆t
j+md+mu∑

k=j

qk−j−md

i,j C(i+ 1, k). (2)

Clearly, an American-style contingent claim may be computed by setting its
value at node (i, j) equal to the maximum between the continuation value as
derived in the right-hand side of equation (2) and the contingent claim payoff
in the case of early exercise.

3. Numerical Results

To assess the goodness of the proposed approximation model, at first we eval-
uate plain vanilla European put options. The model parameters are the pa-
rameters estimated by Madan et al. [8], i.e., θ = −0.14, σ = 0.12 and υ = 0.2,
while the risk-free interest rate is r = 0.1, the dividend yield is δ = 0, and
the initial underlying asset price is S0 = 100. Being the approximation of the
jump size density central in the construction of the multinomial lattice, we il-
lustrate in Figure 2 two examples for the truncation level ε = 0.001 (left plot)
and ε = 0.005 (right plot). Clearly, because the jump density is obtained by
dividing the Lévy measure of the process by the jump intensity, narrowing the
truncation interval determines a jump density with thinner tails.
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To implement the multinomial lattice, we have to choose the size of ∆x, the
difference between two consecutive nodes at a given time period i∆t. A small
∆x results in a better approximation of the jump density but implies a higher
number of branches and requires a heavier computational effort for evaluation
purposes. As in [12], we propose to set ∆x = α

√
∆t with α a positive constant

that makes the lattice construction more flexible so that a suitable number of
branches can be readily chosen. In the numerical experiments reported in the
present paper the parameter α is set equal to 0.05.

−0.1 −0.05 0 0.05 0.1
0

20

40

60

80

100

120

140

160

x value

ju
m

p 
de

ns
ity

ε = 0.001

−0.1 −0.05 0 0.05 0.1
0

10

20

30

40

50

60

x value

ju
m

p 
de

ns
ity

ε = 0.005

Figure 2: The two graphs present the jump density of the VG process
with the parameters as estimated by Madan et al. [8], i.e., θ =
−0.14, σ = 0.12 and υ = 0.2. The graph on the left has a truncation
level ε = 0.001, while for the graph on the right, ε = 0.005.

Figure 3 illustrates the pricing error, e(n) = EP (n) − PAN , defined as
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the difference between the prices of European put options computed with the
multinomial lattice and the corresponding prices obtained through the analyt-
ical formula proposed by Madan et al. [8]. The plot on the left is relative to
a time to maturity T = 0.25 years, while the plot on the right corresponds to
T = 1 years. The number of time steps is n = 10, 15, 20, . . . , 200 when the
time to maturity is T = 0.25, while in the case T = 1, n = 10 is not consid-
ered because the corresponding jump probability, U(ε)∆t, falls outside of [0, 1].
Three different cases are analyzed relative to strike prices K = 90, 100, 110.
The number of lower branches, md, has been selected as the maximum positive
integer such that the probability of the jump size belonging to the fictitious
interval ((md − 1/2)∆x, (md + 1/2)∆x) is greater than 10−8. The number of
upper branches, mu, is defined analogously. Extensive numerical experiments
have highlighted that even moving further into the tails of the jump density
by adding intervals with lower probability mass does not significantly improve
the precision of the proposed evaluation model. Figure 3 shows a convergent
pattern of the prices computed with the multinomial lattice. At n = 200, the
relative percentage error is approximately 0.5% in the worst case (K = 90)
when T = 0.25 and 1% in the worst case (K = 90) when T = 1. Even if the
proposed multinomial lattice model furnishes accurate prices, particularly in
the short maturity case, its computational cost is relevant and may represent
a serious disincentive to applying the multinomial model as a practical tool to
compute option prices under the VG process.

Nevertheless, Figure 3 shows a key feature of the convergence pattern: it
is virtually monotonic. This monotonicity is very important because it is well
known that when an approximating model exhibits smoothness of convergence,
extrapolation techniques can be applied to enhance the rate of convergence.
Specifically, to apply the simple two-point Richardson extrapolation method, it
must be that the prices computed with the discrete time model converge at a
rate 1/n and that the convergent pattern exhibits smoothness.2 An empirical
analysis of the error ratio can help us to assess the rate of convergence and the
smoothness of the option prices computed with the proposed model. In fact, if
the convergence of the multinomial lattice model is smooth at the rate 1/n, the
error ratio ρe(n) = e(n)/e(2n) converges to ρ = 2. In Table 1, we illustrate the
error ratio relative to the same plain vanilla European put options illustrated
above for a number of time steps n = 10, 20, 40, 80, 160 (ρ(10) is not considered

2It would be desirable to derive a rigorous proof to asses the rate of convergence of the
proposed multinomial model but this is a hard task and, to the best of our knowledge, there
is no contribution available that deals with the rate of convergence of lattice based models
approximating Lévy processes with jumps.
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Figure 3: The two graphs present the convergence of European put
options under the VG process with parameters θ = −0.14, σ = 0.12
and υ = 0.2, while the risk-free interest rate is r = 0.1, the underlying
asset value at inception is S0 = 100, and three different levels of the
strike price are considered, K = 90, 100, 110. The graph on the left
illustrates the case with time to maturity T = 0.25 while the graph
on the right is relative to the case T = 1.
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T = 0.25 T = 1

n K=90 K=100 K=110 K=90 K=100 K=110

10 1.9983 2.1352 1.9271 - - -
20 2.0270 2.1183 1.8625 2.0618 2.0746 2.1737
40 2.0209 2.0462 1.8909 2.0260 2.0866 2.2126
80 2.0102 1.9591 2.1092 2.0333 2.0753 2.2050
160 1.9778 1.9971 1.8334 2.0579 2.0573 2.2252

Table 1: This table reports the error ratios, ρe(n), of plain vanilla
European put options for a number of time steps n = 10, 20, 40, 80.
The underlying asset price at inception is S0 = 100, and the risk-free
interest rate is r = 0.1. Three different strikes, K = 90, 100, 110,
and two different maturities, T = 0.25, 1 are considered (ρ(10) is
not considered in the case of T = 1 because the price EP (10) is
meaningless). The parameters of the VG process are σ = 0.12,
θ = −0.14 and υ = 0.2.

in the case T = 1 because the price EP (10) is meaningless).

As it is evident by looking at Table 1 and is confirmed by extensive addi-
tional numerical experiments, the error ratio computed with the multinomial
model is close to 2. This value means that a simple two-point Richardson ex-
trapolation can be applied to enhance the rate of convergence. In Table 2, we
report the prices of the European put options described above obtained with
a two-point Richardson extrapolation. To consider a wider set of option prices
we also evaluated contracts with strike price K = 95 and K = 105. Each price,
RE(n), is equal to 2EP (2n) − EP (n), where EP (n) is the put option price
computed by the multinomial lattice with n time steps, and n = 10, 20, 40, 80
(n = 10 is not considered in the case T = 1 because the jump probability,
U(ε)∆t, falls outside the interval [0, 1]). The rows labeled AN illustrate the
prices obtained with the analytical formula of Madan et al. [8], while the rows
MSS report the prices obtained with the lattice model as implemented by MSS
[12].3.

To assess the computational cost of the proposed multinomial model, in
Table 3, we report the number of upper and lower branches, mu and md, re-
spectively, emanating from each node of the lattice when the number of time

3MSS implemented the multinomial lattice model by setting ∆x = α
√

∆t with α =
√

θ2υ + σ2, the standard deviation of the VG process, and n = 200, md = 200, mu = 200.
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T = 0.25

K=90 K=95 K=100 K=105 K=110
RE(10) 0.2304 0.6233 1.5724 3.6977 7.5578
RE(20) 0.2305 0.6221 1.5715 3.6930 7.5578
RE(40) 0.2305 0.6216 1.5709 3.6929 7.5574
RE(80) 0.2304 0.6219 1.5707 3.6932 7.5571
RE(160) 0.2304 0.6217 1.5708 3.6928 7.5574

AN 0.2304 0.6218 1.5708 3.6925 7.5572
MSS 0.2298 0.6212 1.5720 3.6974 7.5594

T = 1

K=90 K=95 K=100 K=105 K=110
RE(10) - - - - -
RE(20) 0.5369 1.0334 1.8578 3.1308 4.9679
RE(40) 0.5352 1.0315 1.8560 3.1318 4.9651
RE(80) 0.5350 1.0306 1.8547 3.1283 4.9632
RE(160) 0.5349 1.0301 1.8541 3.1296 4.9624

AN 0.5347 1.0300 1.8538 3.1277 4.9617
MSS 0.5319 1.0274 1.8532 3.1321 4.9697

Table 2: This table reports the European put option prices, RE(n) =
2P (2n) − P (n), obtained with the two-point Richardson extrapo-
lation for n = 10, 20, 40, 80, 160 (n = 20, 40, 80, 160 in the case
T = 1). The underlying asset price at inception is S0 = 100,
and the risk-free interest rate is r = 0.1. Five different strikes,
K = 90, 95, 100, 105, 110, and two different maturities, T = 0.25, 1
years, are considered. The parameters of the VG process are
σ = 0.12, θ = −0.14 and υ = 0.2. The rows AN report the cor-
responding prices computed with the analytical formula of Madan
et al., [8] while the rows MSS illustrate the prices computed with
the multinomial lattice as implemented by MSS [12].
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T = 0.25

n md mu N NRE(time) Nbin

10 87 44 7216 44617 (< 1) 298
20 118 60 37401 237522(1.1) 688
40 161 83 200121 1279122(4.2) 1598
80 220 113 1079001 6926682(12.9) 3721
160 300 154 5847681 37588482(38.2) 8669
320 408 210 31740801 - -

MSS(200) 200 200 8040201 - 4009

T = 1

n md mu N NRE(time) Nbin

10 - - - - -
20 64 32 20181 127642(< 1) 504
40 87 44 107461 684262(2.6) 1168
80 118 60 576801 3719682(9.1) 2726
160 161 83 3142881 20246082(26.8) 6362
320 220 113 17103201 - -

MSS(200) 200 200 8040201 - 4009

Table 3: This table reports the number of branches, md and mu, and
the total number of nodes, N , of the proposed multinomial lattice
while the column NRE contains the number of nodes needed to com-
pute the extrapolated option prices together with the computational
time, in seconds, needed to compute the option price (reported in
brackets). The column labeled Nbin reports the number of steps
needed for a binomial recombining lattice to generate a number of
nodes corresponding to NRE .
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steps represents a geometric sequence with the initial value 10 (20 in the case
T = 1) and the common ratio 2. The column labeled N reports the total num-
ber of nodes contained in each lattice. The column NRE contains the number
of nodes needed to compute the extrapolated option prices. The CPU time, in
seconds, of each extrapolated option price is reported in brackets (all the com-
putations were performed on a 3 GHz computer with 1 GB of RAM, running
Winows XP). Finally, to further clarify the computational cost of the multi-
nomial lattice with Richardson extrapolation, in the column labeled Nbin we
report the number of steps needed for a binomial recombining lattice to generate
a number of nodes corresponding to NRE .

By looking at Tables 2 and 3, some interesting considerations arise. First,
we note that the proposed multinomial model coupled with Richardson extrap-
olation furnishes highly accurate option prices with a relatively small number
of time steps. In fact, in the short maturity case, T = 0.25 years, the extrap-
olated prices, RE(10), obtained with 10 and 20 time steps are affected by a
maximum error of 0.2% (when K = 95), and the pricing error reduces further
when n = 20, 40,80 or 160. In the case with maturity T = 1, the extrapolated
prices, RE(20), are affected by a maximum error of 0.4% (when K = 90)),
which reduces further when a higher number of time steps is considered.

Second, to give an idea of the computational effort needed to compute
option prices, it is worth mentioning that 44617 nodes are needed to obtain
the prices RE(10). It may be interesting to observe that this number of nodes
corresponds to the number of nodes of a binomial recombining lattice with
approximately 298 time steps. The CPU time needed to compute such prices
is less than one second. In the case with maturity T = 1 year, 127642 nodes
are needed to compute the prices RE(20), and this number corresponds to
the number of nodes generated by a binomial reconnecting tree with 504 time
steps. Also in this case the CPU time is less than 1 second. Hence, in both
cases, the application of the Richardson extrapolation allows us to reach higher
precision and considerably reduces the computational cost of the multinomial
lattice model.

In the case of American options, the above analysis may not be extended
straightforwardly because of the presence of the unknown optimal exercise
boundary. To investigate on an empirical ground the convergence of the pro-
posed multinomial model, we have conducted several numerical experiments.
We observed the same monotonic pattern already shown in the case of plain
vanilla European options. As an example, in Figure 4 we illustrate the prices
of American put options for a number of time steps n = 10, 15, 20, . . . , 200.
The contractual parameters are those reported in [5], i.e., the underlying asset
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price at inception is S0 = 1369.41, the risk-free interest rate is r = 0.0541, the
continuous dividend yield is δ = 0.012, and the maturity is T = 0.56164 years.
Four different strikes, K = 1200, 1260, 1320, 1380, are considered while the pa-
rameters of the VG process are θ = −0.22898, σ = 0.20722 and υ = 0.50215.
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Figure 4: The graph presents the convergence of American put op-
tions under the VG process with parameters θ = −0.22898, σ =
0.20722 and υ = 0.50215. The risk-free interest rate is r = 0.0541,
the continuous dividend yield is δ = 0.012, the underlying asset
value at inception is S0 = 1369.41, the maturity is T = 0.56164
years, and four different levels of the strike price are considered,
K = 1200, 1260, 1320, 1380.

Next, to investigate the order of convergence of the multinomial lattice
model, we -consider the difference ratio, ρd(n) = (AP (n)−AP (2n))/(AP (2n)−
AP (4n)), where AP (n) stands for the price of an American put option after
n time steps. It is easy to show that, if the error ratio, ρe(n), converges to a
constant, then the difference ratio, ρd(n), converges to the same constant. It
follows that if ρd(n) converges to 2, the proposed lattice model has a convergence
of order 1/n also in the case of plain vanilla American options, and simple two-
point Richardson extrapolation can be used to enhance the rate of convergence.
On this basis, we conducted extensive numerical experiments highlighting that
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n K=1200 K=1260 K=1320 K=1380

10 2.0460 2.0106 2.0958 2.0345
20 1.9919 2.0804 1.9913 2.0936
40 2.0692 1.9643 2.0254 2.0245
80 1.9645 2.0872 2.0283 1.9832

Table 4: This table reports the difference ratios, ρd(n) = (AP (n)−
AP (2n))/(AP (2n) − AP (4n)), of plain vanilla American put op-
tions for a number of time steps n = 10, 20, 40, 80. The underly-
ing asset price at inception is S0 = 1369.41, the risk-free interest
rate is r = 0.0541, the continuous dividend yield is δ = 0.012,
and the maturity is T = 0.56164 years. Four different strikes,
K = 1200, 1260, 1320, 1380 are considered. The parameters of the
VG process are σ = 0.20722, θ = −0.22898 and υ = 0.50215.

the difference ratio of American put options is very close to 2, and extrapolations
may be applied to obtain fast and accurate estimates of option prices. As an
example, in Table 4, we report the difference ratios for the American put options
described above for n = 10, 20, 40, 80.

We are in a position now to compute American option prices by applying
the two-point Richardson extrapolation. Let REA(n) denote the price of an
American put option computed using the two-point Richardson extrapolation,
i.e., REA(n) = 2AP (2n) − AP (n). In Table 5, we report such prices for the
same options described above. In the row labeled HM, we report the prices
obtained by Hirsa and Madan [5] by applying a finite difference scheme. The
last row, labeled H, shows the prices obtained byWhitley [16], who implemented
the same finite difference scheme proposed in [5]. The percentage difference
between the prices presented in [5] and in [16] is approximately 0.1% , which
may be due, according to Whitley, to a different choice of the minimum and
of the maximum underlying asset price in the grid used for price calculations.
By looking at Table 5, it emerges that the prices computed by the proposed
multinomial lattice coupled with Richardson extrapolation for n = 10 steps
have a relative error smaller than 0.1% with respect to the prices obtained both
by Hirsa and Madan and by Whitley. Increasing the number of time steps,
the prices obtained through the lattice based algorithm are very close to those
obtained by Whitley.

In Table 6, we compare the option prices obtained by the proposed multino-
mial lattice model coupled with Richardson extrapolation with those computed
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K=1200 K=1260 K=1320 K=1380

REA(10) 35.5196 48.7658 65.9589 87.9113
REA(20) 35.4977 48.7603 65.9117 87.8961
REA(40) 35.4996 48.7403 65.9138 87.8765
REA(80) 35.4916 48.7448 65.9107 87.8739
REA(160) 35.4937 48.7395 65.9090 87.8748

HM 35.5301 48.7976 65.9908 87.9911
W 35.484 48.734 65.906 87.880

Table 5: This table reports the prices for American put options,
computed with a two-point Richardson extrapolation, REA(n) for
n = 10, 20, 40, 80, 160. The underlying asset price at inception is
S0 = 1369.41, the risk-free interest rate is r = 0.0541, the continuous
dividend yield is δ = 0.012, and the maturity is T = 0.56164 years.
Four different strikes, K = 1200, 1260, 1320, 1380 are considered.
The parameters of the VG process are σ = 0.20722, θ = −0.22898
and υ = 0.50215. The row labeled HM reports the prices obtained
with the finite difference scheme proposed by Hirsa and Madan [5],
while the last row, labeled W, reports the prices obtained with the
same finite difference scheme implemented by Whitley [16].
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by the finite difference scheme proposed by Levendorskǐı et al. [7], reported
in the last row labeled LKZ. In the rows labeled HM are reported the prices
computed by the numerical scheme of Hirsa and Madan [5] as implemented
by Levendorskǐı et al. It emerges that, already with n = 10 time steps, the
relative error of the prices computed by the multinomial model is at most ap-
proximately 0.1% with respect to both the values obtained with the Hirsa and
Madan model and those computed with the Levendorskǐı et al. method. The
CPU time needed to compute such prices with the lattice based model is less
than one second, while the finite difference method of Levendorskǐı et al. re-
quires 7 seconds and that of Hirsa and Madan requires 9 seconds when the
coarsest grid considered in [7] is adopted (Levendorskǐı et al. worked on a PC
with 1.8 GHz, 256 MB under Windows XP).

In Table 7, we illustrate the prices of American put options computed with
the multinomial lattice coupled with Richardson extrapolation. The prices com-
puted with n = 10 time steps are not considered because the jump probability,
U(ε)∆t, falls outside the interval [0, 1]. The prices in the row labeled Exact are
computed with the CONV method proposed by Lord et al. [9] as reported in
the paper of Hilber et al. [4]. In all the cases considered the prices computed
with the proposed lattice-based method are highly accurate.

4. Conclusions

We have considered the problem of evaluating European and American plain
vanilla options when the log price of the underlying asset is driven by a VG
process. Invoking the Lévy-Ito decomposition, a VG process may be described
as the sum of a deterministic drift plus its jumps. A problem arises because
the Lévy measure of the process has a singularity in the origin, but because
it has finite variation, we may truncate the process in a small interval around
zero and approximate the small jumps with their expected value. As a result,
a compound Poisson process may be easily derived that converges to the target
VG process as the truncation interval shrinks. We have developed a lattice
model to approximate the compound Poisson process and have used it as the
corner stone to build up a lattice that describes the dynamics of a certain stock
price. Then, we have evaluated European and American plain vanilla options
by applying the usual backward induction. Numerical results have shown a
virtually monotonic convergent pattern, and on an empirical ground, we can
assert that the rate of convergence is of order 1/n. This result allows us to apply
a simple two-point Richardson extrapolation to enhance the rate of convergence.
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S0

1176.29 1200.05 1234.13 1259.06 1274.26

REA(10) 134.6704 120.7061 103.5139 92.7628 86.8814
REA(20) 134.6875 120.6766 103.4877 92.7616 86.8407
REA(40) 134.6893 120.6710 103.4957 92.7344 86.8245
REA(80) 134.6814 120.6677 103.4859 92.7378 86.8289
REA(160) 134.6832 120.6667 103.4877 92.7366 86.8278

HM 134.822 120.775 103.567 92.8015 86.8861
LKZ 134.794 120.756 103.546 92.7745 86.8546

S0

1300 1326.26 1353.05 1402.65 1436.72

REA(10) 77.8571 69.7509 62.4989 51.2508 44.9094
REA(20) 77.8153 69.7183 62.4621 51.2409 44.8874
REA(40) 77.8069 69.7118 62.4505 51.2219 44.8785
REA(80) 77.8016 69.7066 62.4479 51.2228 44.8750
REA(160) 77.8004 69.7038 62.4480 51.2204 44.8736

HM 77.8496 69.7482 62.4849 51.2532 44.9042
LKZ 77.8103 69.7011 62.4309 51.1894 44.8358

Table 6: This table reports the prices for American put options,
computed with a two-point Richardson extrapolation, REA(n) for
n = 10, 20, 40, 80. The strike price is K = 1300, the risk-free interest
rate is r = 0.0541, the continuous dividend yield is δ = 0, and the
maturity is T = 0.56164 years. Ten different value of the asset price
at inception are considered. The parameters of the VG process are
σ = 0.20722, θ = −0.22898 and υ = 0.50215. The rows labeled HM
report the prices obtained with the finite difference scheme proposed
by Hirsa and Madan [5], while the rows labeled LKZ report the prices
obtained with the finite difference scheme proposed by Levendorskǐı
et al. [7].
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S0 = 8 S0 = 9 S0 = 10 S0 = 11 S0 = 12

REA(20) 2.060171 1.326301 0.800681 0.471244 0.279438
REA(40) 2.060182 1.326370 0.800636 0.471236 0.279393
REA(80) 2.060176 1.326392 0.800605 0.471228 0.299393
REA(160) 2.060162 1.326358 0.800583 0.471212 0.279393
Exact 2.060179 1.326384 0.800601 0.471222 0.279391

Table 7: This table reports the prices for American put options,
computed with a two-point Richardson extrapolation, REA(n) for
n = 10, 20, 40, 80, 160. The strike price is K = 10, the risk-free
interest rate is r = 0.06, the continuous dividend yield is δ = 0,
and the maturity is T = 0.5 years. Five different asset price, S0 =
8, 9, 10, 11, 12 are considered. The parameters of the VG process are
σ =

√
1/8, θ = 0 and υ = 0.25. The row labeled Exact reports the

prices calculated using the CONV method described in Lord et al.
[9].

As a result, fast and accurate estimates of the option prices have been obtained.
The proposed lattice-based model is flexible enough to be applied also in the
case of pure jump Lévy processes with infinite variation such as the normal
inverse Gaussian process and this will be a goal for future research.
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