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Abstract: We present an analysis for the flow of an incompressible gener-
alized magnetohydrodynamic (MHD) Oldroyd-B fluid with constant pressure
gradient. Fractional derivative is used in the governing equation. Exact ana-
lytic solutions are obtained for the velocity field and shear stress in series form
in terms of Fox H-functions by means of the Fourier sine transform and dis-
crete Laplace transform. All the imposed initial and boundary conditions are
satisfied by the obtained solutions.
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1. Introduction

The study of fluid motions due to spinning or oscillating bodies have received
much attention due to its importance not only to the field of academics but
also to the industry. Such motions have many applications in many industrial
and biological processes such as food industry, oil exploitation, the periodicity
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of blood flow in the cardiovascular system [6], chemistry and bio-engineering,
soap and cellulose solutions etc. Unsteady flows of viscoelastic fluids due to
the oscillations of a rigid flat plate is of considerable interest. One of rate
type viscoelastic fluids is the Oldroyd-B model which seems to be amenable to
analysis and more important to experiments, sometime used as a test to check
the performance of numerical methods for the computation of different flows.

Recently, the fractional derivative approach (see [8]) is proving to be an
important tool for describing the behaviors of such types of fluids. Many re-
searchers studied different problems related to such fluids. In their works, the
time derivatives of an integer order in the constitutive equations for general-
ized Oldroyd-B fluids are replaced by the so-called Riemann-Liouville fractional
derivatives. Qi and Xu [7] investigated the Stokes problem for a viscoelastic
fluid with a generalized Oldroyd-B model. Hyder discussed the flows of general-
ized Oldroyd-B fluid between two side walls perpendicular to the plate. Fetecau
et al. [2, 3, 4, 5] investigated some accelerated flows of a generalized Oldroyd-B
fluid. Khan et al. [12] studied the flow of generalized Oldroyd-B fluid between
two side walls. Moreover, MHD flows have wide converged on the develop-
ment of energy generation and in astrophysical and geophysical fluid dynamics.
Recently, the theory of MHD has received much attention, see [10, 11] and ref-
erence therein. In this paper, we consider the MHD flow of an incompressible
generalized Oldroyd-B fluid. Exact solutions for the velocity field and shear
stress are obtained by using the Fourier sine transform and Laplace transform
technique for the fractional calculus operators. The obtained solutions satisfy
all the imposed initial and boundary conditions.

2. Governing Equations

For an incompressible and unsteady generalized Oldroyd-B fluid the constitutive
equation is given as [5]:

T = −pI+ S; (1 + λ
Dα

Dtα
)S = µ(1 + θ

Dβ

Dtβ
)A, (1)

where T is the Cauchy stress tensor, S is the extra stress tensor, pI denotes the
indeterminate spherical stress, L is the velocity gradient, A = L + LT is the
first Rivlin-Ericksen tensor, µ is the dynamic viscosity, λ and θ are relaxation
and retardation times, α and β are the fractional calculus parameters such that
0 ≤ α ≤ β ≤ 1, and

DαS

Dtα
= Dα

t + (V.∇)S− LS− SL,
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DβA

Dtβ
= Dβ

t + (V.∇)A− LA−AL. (2)

In the above relations V is the velocity, ∇ is the gradient operator, Dα
t and

Dβ
t are the fractional differentiation operators of order α and β based on the

Riemann-Liouville definition, defined as (see e.g. [8])

Dp
t [f(t)] =

1

Γ(1− p)

d

dt

∫ t

0

f(τ)

(t− τ)p
dτ, 0 ≤ p ≤ 1, (3)

where Γ(·) is the Gamma function. The model reduces to the ordinary Oldroyd-
B model when α = β = 1. In the following we shall determine a velocity field
and an extra stress of the form

V = u(y, t)i, S = S(y, t), (4)

where u is the velocity and i is the unit vectors in the x-direction. Substituting
Eq.(4) into Eq.(1) and taking account of the initial condition

S(y, 0) = 0, y > 0, (5)

the fluid being at rest up to the time t = 0, we get

(1 + λDα
t )Sxy = µ(1 + θDβ

t )∂yu(y, t), (6)

where Syy = Szz = Sxz = Syz = 0, and Sxy = Syx. The fluid is permeated
by an imposed magnetic field B0 which acts in the positive y-coordinate. In
the low-magnetic Reynolds number approximation, the magnetic body force is
represented by σB2

0u. Then, the equation of motion yields the following scalar
equation:

∂ySxy − ∂xp− σB2
0u = ρ∂tu, ∂yp = ∂zp = 0, (7)

where ρ is the constant density of the fluid and ∂xp is the pressure gradient
along x-axis. Eliminating Sxy between Eqs. (6) and (7), we find the governing
equation under the form

(1+λDα
t )∂tu(y, t) = ν(1+θDβ

t )∂
2
yu(y, t)−M(1+λDα

t )u(y, t)+
1

ρ
(1+λDα

t )∂xP,

(8)
where ν = µ/ρ is the kinematic viscosity of the fluid and M = σB2

0u.
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3. Statement of the Problem

Supposed that a generalized Oldroyd-B fluid is occupying the space above a
flat plate. Initially the fluid as well as the plate are at rest, and at time t = 0+

the plate oscillate in its plane with the velocity V cos(wt) or V sin(wt) (V is
a constant). Due to the shear, the fluid is moved gradually. Accordingly, the
initial and boundary conditions of velocity field are:

u(y, 0) = ∂tu(y, 0) = 0 for y > 0, (9)

u(0, t) = V sin(wt) or V cos(wt) for t > 0. (10)

Also, the natural conditions have to be satisfied,

u(y, t), ∂yu(y, t) → 0 as y → ∞, and t > 0. (11)

4. Calculation of Velocity Field

Let us employing non-dimensional quantities

u∗ =
u

V
, y∗ =

yV

ν
, t∗ =

tV

ν
λ∗ = λ(

V

ν
)α, θ∗ = θ(

V 2

ν
)β , M∗ =

Mν

V 2
.

The dimensionless mark * is omitted next for simplicity. Thus, the equation of
dimensionless motion becomes

(1+λDα
t )∂tu(y, t) = ν(1+θDβ

t )∂
2
yu(y, t)−M(1+λDα

t )u(y, t)+
1

ρ
(1+λDα

t )∂xP,

(12)
with the given conditions defined as in Eqs. (9), (10) and (11). In order to solve
the above problem first we multiply both sides of Eq. (12) by sin(ξy), and inte-
grating the result with respect to y from 0 to ∞ and taking the corresponding
initial and boundary conditions, we attain the differential equations

(1 + λDα
t )∂tus(ξ, t) = ν(1 + θDβ

t )(ξy sin(wt)− (ξy)2us(ξ, t))

−M(1 + λDα
t )us(ξ, t)−A

1

ξ
(1 + λ

t−α

Γ(1− α)
)(1− (−1)n), (13)

where us(ξ, t) is the Fourier sine transform of u(y, t) satisfying the initial con-
ditions

us(ξ, 0) = ∂tus(ξ, 0) = 0, ξ > 0. (14)
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Applying the Laplace transform for sequential fractional derivatives to Eq. (13)
and using the initial condition Eq. (14), we get

ūs(ξ, s) =
(S +M)−1

((1 + λsα)) + νξ2(1 + θsβ)
[
ν(1 + θsβ)ξw

s2 + w2
−
A(1 + λDα

t )

ξS
(1−(−1)n)].

(15)
To get the solution for velocity field, first we write Eq. (15) in series form as

ūs(ξ, s) =
w

(s2 + w2)

∞
∑

i=0

∞
∑

o=0

∞
∑

k=0

∞
∑

l=0

(−1)i+o+k+lξ−(2i+1)ν−iλkθlMoΓ(o− i)

o!k!l!Γ(−1)Γ(i)Γ(i)Γ(−i)

−
Γ(k − i)Γ(l + i)A(1 − (−1)n)

s−i+o−αk−βl

∞
∑

j=0

∞
∑

m=0

∞
∑

n=0

∞
∑

p=0

(−1)j+m+n+pξ2j−1νj

m!n!p!Γ(−1)Γ(−j)

×
λnθmMpΓ(m− j)Γ(n + j)Γ(p + j + 1)

Γ(j)Γ(−j − 1)s1+p−αn−βm
. (16)

Now apply the discrete inverse Laplace transform and inverse finite Fourier sine
transform (see e.g. [9]) to Eq. (16), we get

us(y, t) =
2

π

∞
∑

ξ=1

sin(ξy) sin(wt)

∞
∑

i=0

∞
∑

o=0

∞
∑

k=0

∞
∑

l=0

(−1)i+o+k+lξ−(2i+1)ν−iλkθlMo

o!k!l!Γ(−1)Γ(i)Γ(i)Γ(−i)

×
Γ(k − i)Γ(l + i)t−i+o−αk−βl−1

Γ(o− i)Γ(−i+ o− αk − βl)
−

2

π

∞
∑

ξ=1

sin(ξy)A(1 − (−1)n)
∞
∑

j=0

∞
∑

m=0

∞
∑

n=0

∞
∑

p=0

(−1)j+m+n+pξ2j−1νjλnθmMpΓ(m− j)Γ(n + j)Γ(p + j + 1)

tp−αn−βmm!n!p!Γ(−1)Γ(−j)Γ(j)Γ(−j − 1)Γ(1 + p− αn− βm)
. (17)

To get Eq. (17) in a more compact form we use Fox H-function [1],

us(y, t) =
2

π

∞
∑

ξ=1

sin(ξy) sin(wt)
∞
∑

i=0

∞
∑

o=0

∞
∑

k=0

(−1)i+o+kξ−(2i+1)ν−iλkθlMo

ti−o+α(k)o!k!

×H
1,3

3,6

[

θ

tβ

∣

∣

∣

∣

(1− o+ i, 0), (1 − k + i, 0), (1 − i, 1)
(2, 0), (1 − i, 0), (1 − i, 0), (1 + i, 0), (0, 1), (1 + i− o+ αk,−β)

∣

∣

∣

∣

]

−A(1− (−1)n)
2

π

∞
∑

ξ=1

sin(ξy)
∞
∑

j=0

∞
∑

m=0

∞
∑

n=0

(−1)j+m+nξ2j−1νjλnθmMpt−αn−βm

m!n!

×H
1,3

3,6

[

Mt

∣

∣

∣

∣

(1−m+ j, 0), (1 − n− j, 0), (−j, 1)
(2, 0), (1 + j, 0), (1 − j, 0), (2 + j, 0), (0, 1), (αn + βm, 1)

∣

∣

∣

∣

]

.

(18)
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We use the following property of Fox H-function for obtaining Eq. (18):

H
1,s

s,t+1

[

σ

∣

∣

∣

∣

∣

(1− a1, A1), ..., (1 − as, As)
(1− b1, B1), ..., (1 − bt, Bt)

]

=
∞
∑

r=0

Γ(a1 +A1r)...Γ(as +Asr)

r!Γ(b1 +B1r)...Γ(bt +Btr)
.(19)

5. Calculation of Shear Stress

Taking the Laplace transform of Eq. (6), we get

S̄xy =
µ(1 + θsβ)

(1 + λsα)

∂ū(y, s)

∂y
. (20)

The image function ū(y, s) of u(y, t) can be easily obtained from Eq. (19).
Introducing then ū(y, s) into eq. (20), we get

S̄xy =
2µ

π

(1 + θsβ)

1 + λsα

∞
∑

ξ=1

ξ cos(ξy)
1

(S +M)((1 + λsα)) + νξ2(1 + θsβ)

× [
ν(1 + θsβ)ξw

s2 + w2
−

A(1 + λsα)

ξS
(1− (−1)n)]. (21)

To get a more compact form we write eq. (21) in series form and then take
the inverse Laplace transform, the obtained result expressed in Fox H-function
is given by

Sxy =
2µ

π

∞
∑

ξ=1

cos(ξy) sin(wt)
∞
∑

i=0

∞
∑

o=0

∞
∑

k=0

(−1)i+o+kξ−2iν−iλkMot−i+o−αk

o!k!

×H
1,3

3,6

[

θ

tβ

∣

∣

∣

∣

(1− o+ i, 0), (1 − k + i, 0), (1 − i, 1)
(2, 0), (1 − i, 0), (1 − i, 0), (1 + i, 0), (0, 1), (1 + i− o+ αk,−β)

]

−A(1 − (−1)n)
2µ

π

∞
∑

ξ=1

cos(ξy)

∞
∑

j=0

∞
∑

m=0

∞
∑

n=0

(−1)j+m+nξ2j−1νjλnθmt−αn−βm

m!n!

×H
1,3

3,6

[

Mt

∣

∣

∣

∣

(1−m+ j, 0), (1 − n− j, 0), (−j, 1)
(2, 0), (1 + j, 0), (1 − j, 0), (2 + j, 0), (0, 1), (αn + βm, 1)

]

. (22)
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