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Abstract: Unlike real numbers which are simply ordered, the problem of
ordering interval numbers is a challenging problem. Several methods have been
proposed to compare intervals. In this paper, we propose two new methods to
compare two interval numbers. The relations ≤k and ≤F on the space of all
interval numbers are proposed.
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1. Introduction

The problem of comparing interval numbers plays an important role in decision
making problems under interval environment. In the last years, several methods
have been proposed to compare two intervals. The foremost work was done by
Moore [7] who studied the arithmetic of interval numbers. There are numbers
of definitions of the ordering relation over intervals [2, 3, 4, 5, 8, 9]. Ishibuchi
and Tanaka [6] suggested three order relations which depends on the endpoints
of intervals, or the midpoint and radius.

In this paper, we propose two new methods for comparing two interval
numbers.
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2. Interval Comparing Methods

In this section, we review some order relations. An interval number a is gen-
erally represented as [a, a] where a ≤ a. If a = a, then a will be degenerate.
By ac = 1

2(a + a) and a∆ = 1
2(a − a), we denote the center and the radius of

a, respectively. Interval arithmetic is defined in [1]. First we define three order
relations, [6].

Definition 2.1. Let a and b be two intervals. The order relations are
defined as:

1) a ≤1 b ⇔ a ≤ b ∧ a ≤ b,

2) a ≤2 b ⇔ ac ≤ bc ∧ a∆ ≤ b∆,

3) a ≤3 b ⇔ ac ≤ bc ∧ a ≤ b.

Note a ≤3 b if and only if a ≤1 b or a ≤2 b.

Definition 2.2. An interval inequality a ≤ b is weakly feasible if and only
if a ≤ b.

Definition 2.3. An interval inequality a ≤ b is strongly feasible if and only
if a ≤ b.

3. New Comparison Methods

In this section, we define new relations for comparing intervals.

Definition 3.1. For two interval numbers a and b, we define

k(a, b) =

{

ac − bc ac 6= bc
a∆ − b∆ ac = bc.

Definition 3.2. For two interval numbers a and b, we define a ≤k b if and
only if k(a, b) ≤ 0.

It is clear when a and b are real numbers, then ” ≤k ” is the ordinary
inequality relation ” ≤ ” on the set of real numbers.

Proposition 3.1. k(a, b) = 0 if and only if a = b.
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Proof. If k(a, b) = 0, then a∆ − b∆ = 0 and ac = bc. Therefore a = b.
If a = b, then ac = bc and a∆ = b∆ and hence k(a, b) = 0.

Theorem 3.1. The relation ” ≤k ” is a partial order.

Proof. Follows from the definition of k.

Example. k([2, 3], [1, 4]) < 0, therefore [2, 3] ≤k [1, 4]. k([1, 5], [7, 9]) < 0,
therefore [1, 5] ≤k [7, 9].

Proposition 3.2. If the inequality a ≤ b is strongly feasible, then a ≤k b.

Proof. Since inequality a ≤ b is strongly feasible, then a ≤ a ≤ b ≤ b and
so

k(a, b) = ac − bc ≤ bc − bc = 0,

therefore a ≤k b.

Proposition 3.3. If a ≤i b for i = 1, 2, then a ≤k b.

Proof. Follows straightforward from Definition 2.1.

Definition 3.3. Let F be some fixed interval number called criterion. We
define

TF = {a : a ≤k F}.

Also, for each a, b ∈ TF , we define the relation ” ≤F ” (”≤” under criterion F )
as follows:

a ≤F b ⇔ NF (a, b) ≤ 0,

where
NF (a, b) = k(a+ a∆F, b+ b∆F ).

Example. Suppose F = [5, 7], a = [1, 3] and b = [0, 6]. We have k(a, F ) ≤
0, k(b, F ) ≤ 0, therefore a, b ∈ TF ,

NF (a, b) = k(a+ a∆F, b+ b∆F )

= k([6, 10], [15, 27])

= 8− 21 = −13 < 0.

Therefore a ≤F b.
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Theorem 3.2. The relation ” ≤F ” is the reflexive, transitive and com-

plete on TF .

Proof. Suppose a, b, c ∈ TF .
(1) Reflexivity:

NF (a, a) = k(a+ a∆F, a+ a∆F ) = 0,

therefore a ≤F a.
(2) Transitivity: If a ≤F b and b ≤F c, then NF (a, b) ≤ 0 and NF (b, c) ≤ 0,

therefore
{

(a+ a∆F )c ≤ (b+ b∆F )c (a+ a∆F )c 6= (b+ b∆F )c
(a+ a∆F )∆ ≤ (b+ b∆F )∆ (a+ a∆F )c = (b+ b∆F )c,

and
{

(b+ b∆F )c ≤ (c+ c∆F )c (b+ b∆F )c 6= (c+ c∆F )c
(b+ b∆F )∆ ≤ (c+ c∆F )∆ (b+ b∆F )c = (c+ c∆F )c,

There are 4 cases. It is easy to prove that
{

(a+ a∆F )c ≤ (c+ c∆F )c (a+ a∆F )c 6= (c+ c∆F )c
(a+ a∆F )∆ ≤ (c+ c∆F )∆ (a+ a∆F )c = (c+ c∆F )c,

(3) Completeness: If a �F b, then we will prove b ≤F a. Since a �F b,
then NF (a, b) > 0. Therefore

k(a+ a∆F, b+ b∆F ) > 0.

So
{

(a+ a∆F )c > (b+ b∆F )c (a+ a∆F )c 6= (b+ b∆F )c
(a+ a∆F )∆ > (b+ b∆F )∆ (a+ a∆F )c = (b+ b∆F )c,

then k(b+ b∆F, a+ a∆F ) < 0, and hence NF (b, a) ≤ 0. Therefore b ≤F a.

4. Conclusion

The problem of ordering interval numbers is studied. For any two intervals,
there is not a natural ordering among the set of all intervals. There are several
methods to compare two intervals. In this paper, we propose two new methods
to compare interval numbers. The relations ” ≤k ” and ” ≤F ” on the space of
all interval numbers are proposed.
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