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Abstract: In this paper, we present a sufficient condition for the density of
C∞

0 (Rn) in W 1,p(x)(Rn) with assumption that p(x) satisfying a condition such
that C1(Rn) is dense inW 1,p(x)(Rn). The origin of our work comes from a similar
question of Hästö [5] under the density of continuous or Hölder continuous
whether it is possible to deduce the density of smooth functions.
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1. Introduction

Variable exponent analysis has become a growing field of interest since Kováčik
and Rákosńık paper [6]. Many basic properties of Lebesgue and Sobolev spaces
were shown in their paper. Variable Lebesgue spaces are a generalization of
Lebesgue spaces where we allow the exponent to be a measurable function and
thus the exponent may vary, and has found numerous important applications
with Sobolev spaces. Examples are fluid dynamics, elasticity theory, differential
equations with non-standard growth conditions and image restoration (cf. [2,
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8, 7]). On the basic properties of the variable exponent Lebesgue and Sobolev
spaces we refer to [3, 6].

Let p : Ω → [1,∞) be a measurable bounded function, called a variable
exponent on Ω. We also define p+ = esssupx∈Rnp(x) and p− = essinfx∈Rnp(x).

The class C∞

0 (Rn) of infinitely differentiable functions with compact support
in Ω is dense in the spaces Lp(.)(Ω), which was established among the first basic
properties of these spaces in [6].

Variable exponent Lebesgue spaces do not have the mean continuity prop-
erty. If p is continuous and non-constant function in an open ball B, then there
exists a function Lp(.)(Ω) such that u(x+h) /∈ Lp(.)(Ω for h ∈ R

n with arbitrary
small norm.

We define the variable exponent Lebesgue space Lp(.)(Ω) to consist of all
measurable functions u : Ω → R for which the modular ̺p(.)(u) =

∫

Ω | u(x) |p(x)

dx is finite. We define the Luxemburg norm on this space by

‖u‖Lp(.)(Ω) = ‖u‖p(.) = inf{λ > 0 : ̺p(.)(u/λ) ≤ 1}.

If p is a constant function, then the variable exponent Lebesgue spaces
coincides with the classical Lebesgue space. One central property of these spaces
reads: If p+ < ∞ and (ui) is a sequence of functions in Lp, then ‖ui‖p(.) → 0 if
and only if ̺p(.)(ui) → 0. This and many other basic results were proven in [6].

The variable exponent Sobolev space W 1,p(.)(Ω) is the subspace of func-
tions u ∈ Lp(.)((Ω)) whose distributional gradient exists almost everywhere
and satisfies |∇u| ∈ Lp(.)(Ω). The norm ‖u‖1,p(.) = ‖u‖p(.) + ‖∇u‖p(.) makes

W 1,p(.)(Ω) a Banach space. We also define a modular in the Sobolev space by
̺1,p(.)(u) = ̺p(.)(u) + ̺p(.)(|∇u|).

It is known that in general, C∞(Ω) may not be dense in W 1,p(.)(Ω) . The
first example is given by Zhikov [10, 11] as follows:

Ω = {x = (x1, x2) ∈ R
2 : |x| < 1},

p(x) =

{

α1 if x1x2 > 0,

α2 if x1x2 < 0,

where 1 < α1 < 2 < α2, then C∞(Ω) is not dense in W 1,p(.)(Ω).
Edmunds and Rakosnik [4] proved denseness under some special mono-

tonicity type condition on p(x). In [1, 9] another type of sufficient condition to
ensure the density of C∞(Ω) in W 1,p(.)(Ω) is the so-called logarithmic Holder
continuity, which is expressed as

|p(x)− p(y)| ≤
C

−ln|x− y|
, for all x, y ∈ Ω, |x− y| ≤

1

2
.
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2. Density

After the Zhikov nondensity example it became more significant to look at less
smoothness density of functions in variable exponent Sobolev spaces. Hasto [5]
made some work in this direction and asked the following.

Question 2.1. Suppose that C(Ω) or Cα(Ω) is dense in W 1,p(.)(Ω). Is it

then true that smooth functions are dense in W 1,p(.)(Ω)?

Since the derivative of a Sobolev function may be unbounded it seems for
convolution the assumption of density of continuous functions does not help.
Similarly, we assume density of C1(Rn) in W 1,p(.)(Rn) instead of density C(Ω)
and show the following theorem.

Theorem 2.2. Let p(.) ∈ P (Rn) be a bounded variable exponent. Suppose

that C1(Rn) is dense in W 1,p(.)(Rn), then C∞

0 (Rn) is dense W 1,p(.)(Rn).

Proof. We first show that C1
0 (R

n) is dense in C1(Rn) on the norm of
W 1,p(.)(Rn). Let u ∈ C1(Rn) and η ∈ C1

0(R
n) be a compactly supported function

which equals 1 near the origin, and consider the functions uR(x) = u(x)η( x
R
) for

R > 0. It is easy to see uR ∈ C1
0 (R

n) . Since p+ < ∞, instead of ‖uR−u‖p(.) → 0
norm convergence, by using Lebesgue dominated convergence in the modular
we see that

∫

Rn

|uR − u|p(x) dx → 0

holds as R → ∞.

We now show ‖(∇uR)(x) − (∇u)(x)‖p(.) → 0 as R → ∞. By product rule
we get

∇uR = (∇u)(x)η(
x

R
) +

1

R
u(x)(∇η)(

x

R
).

Let us prove the convergence:

‖(∇uR)(x) − (∇u)(x)‖p(.) = ‖(∇u)(x)η(
x

R
) +

1

R
u(x)(∇η)(

x

R
)− (∇u)(x)‖p(.)

≤ ‖(∇u)(x)η(
x

R
)− (∇u)(x)‖p(.)

+
1

R
‖u(x)(∇η)(

x

R
)‖p(.).

Again since p+ < ∞, we use modular convergence for the first term and by
using Lebesgue dominated convergence the first term goes to zero as R → ∞
and it is obvious the second term goes to zero as R → ∞.

We now show that C∞

0 (Rn) is dense in ∈ C1(Rn).
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Since u ∈ C1
0 (R

n) has compact support, we denote this set by spt u = K
and from K we define larger compact set as follows:

Kδ(ǫ) = {x ∈ R
n : dist(x,K) ≤ δ(ǫ)},

where δ(ǫ) will be chosen later and will be taken such that 0 < δ(ǫ) < 1 .

With this condition ∇u and u are uniformly continuous on Kδ(ǫ).

Let 0 < ǫ < 1, then we get

|u(x− y)− u(x)| < ǫ as |y| < δ1(ǫ)

and

|∇u(x− y)−∇u(x)| < ǫ as |y| < δ1(ǫ)

in which δ1(ǫ), δ2(ǫ) < ǫ can be chosen. We get

δ(ǫ) = min{δ1(ǫ), δ2(ǫ)},

as we promised.

Let φφδ(ǫ)
be a standard mollifier. Then

‖u ∗ φδ(ǫ) − u‖W 1,p(.)(Rn) = ‖u ∗ φδ(ǫ) − u‖p(.) + ‖∇u ∗ φδ(ǫ) −∇u‖p(.).

Since p+ < ∞, we show convergence in the modular:

∫

Rn

∣

∣

∣

∣

∣

∫

B(0,δ(ǫ))
|u(x− y)− u(x)|φδ(ǫ)(y)dy

∣

∣

∣

∣

∣

p(x)

dx ≤ ǫp
−

|Kδ(ǫ)|

and

∫

Rn

∣

∣

∣

∣

∣

∫

B(0,δ(ǫ))
|∇u(x− y)−∇u(x)|φδ(ǫ)(y)dy

∣

∣

∣

∣

∣

p(x)

dx ≤ ǫp
−

|Kδ(ǫ)|

are obtained. Since |Kδ(ǫ)| < ∞ the convergence holds.

Thus we show that C1
0 (R

n) is dense in C1(Rn) and C∞

0 (Rn) is dense C1
0 (R

n).
By the assumption of theorem, the density that we have showed and triangular
inequality of norm easily show that C∞

0 (Rn) is also dense in W 1,p(.)(Rn).
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[2] L. Diening and M. Růžička, Calderon-Zygmund operators on generalized
Lebesgue spaces Lp(.) and problems related to fluid dynamics, J. Reine

Angew. Math, 563 (2003), 197–220.
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