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1. Introduction

Fractional kinetic equations are studied to determine certain physical phenom-
ena governing diffusion in porous media, reaction and relaxation in complex
systems, anomalous diffusion etc. In this connection, one can refer to the books
by Hilfer [5], Kiryakova [7], Podlubny [12], and other works in this field. Frac-
tional kinetic equations are studied by Hille and Tamarkin [6], Glöckle and
Nonnenmacher [3], Saichev and Zaslavsky [13], Saxena et al. [15-17], and Za-
slavsky [23], among others for their importance in the solution of certain applied
problems.

Saxena et al. [18-19] have investigated the solution of certain fractional
differ-integral equations, related to reaction diffusion equations. Transform
technique is used and solutions are expressed in terms of the Mittag-Leffler and
H-functions [10, 8].

Saxena and Kalla [14] have obtained solution of a generalized fractional
kinetic equation and gave some examples. Here we give a correct version of
their solution and examples given by them. We introduce a more general form
of fractional kinetic equation and obtain its solution using Laplace transform.
An alternative method of deriving solutions of such equations is also given.

2. The Generalized Hypergeometric Function

The generalized hypergeometric function qFq is defined by [21, p. 19-20]

pFq (A1, · · · , Ap;B1, · · · , Bq; z) =

∞
∑

k=0

(A1)k · · · (Ap)k
(B1)k · · · (Bq)k

zk

k!
, (1)

where

(a)k =

{

1, if k = 0,
Γ(a+k)
Γ(a) = a(a+ 1)(a + 2) · · · (a+ k − 1), if k = 1, 2, 3, · · · .

p and q are positive integer or zero, the variable z, the numerator parame-
ters A1, · · · , Ap, and the denominator parameters B1, · · · , Bq take on complex
values, provided that Bj 6= 0,−1,−2, · · · ; j = 1, · · · , q.

The pFq series:

(i) converges for |z| < ∞ if p ≤ q,

(ii) converges for |z| < 1 if p = q + 1, and
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(iii) diverges for all z, z 6= 0, if p > q + 1.

As particular cases of (1) we have,

ez = 0F0(−;−; z). (2)

(1− z)−a = 1F0(a;−; z). (3)

3. Mittag-Leffler Function

In 1903, the Swedish mathematician Gosta Mittag-Leffler [10] defined and stud-
ied a function, now called as Mittag-Leffler function and defined as:

Eα(z) =
∞
∑

k=0

zk

Γ(αk + 1)
, Re(α) > 0. (4)

In 1905, this function was generalized by Wiman [22] as

Eα,β(z) =
∞
∑

k=0

zk

Γ(αk + β)
, Re(α),Re(β) > 0. (5)

The integral representation of this function is as follows:

Eα,β(z) =
1

2πi

∫ γ+i∞

γ−i∞

Γ(s)Γ(1− s)

F (β − αs)
(−z)−sds, (6)

where the path of integral separates all poles of Γ(s) and Γ(1−s). This represen-
tation can be used to express the Mittag-Leffler function in terms of H-function.

4. Mellin-Ross Function

It is defined as [9],

Et(ν, a) = tν
∞
∑

k=0

(at)k

Γ(k + ν + 1)
=

tν

Γ(ν + 1)
1F1(1; ν + 1; at). (7)
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5. Riemann-Liouville Operator

Many authors have studied operators of fractional calculus, due to their ap-
plications in solving integral and differintegral equations and fractional order
models.

The Riemann-Liouville fractional integral operator is defined by [9], [11],
[12]:

0D
−γ
x f(x) =

1

Γ(γ)

∫ x

0
(x− t)γ−1f(t) dt, Re(γ) > 0, x > 0, (8)

whereas the Riemann-Liouville fractional differential operator is defined by

0D
µ
xf(x) = Dn

[

0D
µ−n
x f(x)

]

, Re(µ) ≥ 0, x > 0, n = [µ] + 1. (9)

For f(t) = tδ we have ([9], [11], [12])

0D
−γ
t tδ =

Γ(δ + 1)

Γ(δ + γ + 1)
tγ+δ, Re(γ) > 0,Re(δ) > −1, t > 0 (10)

and

0D
µ
t t

δ =
Γ(δ + 1)

Γ(δ − µ+ 1)
tδ−µ, Re(µ) ≥ 0,Re(δ) > −1, t > 0. (11)

Now, we establish some results which will be used next in the paper.
From (1) and (8), for Re(γ) > 0

0D
−γ
t

{

tδ−1
pFq (A1, · · · , Ap;B1, · · · , Bq; at)

}

=
tγ−1

Γ(γ)

×

∞
∑

k=0

(A1)k · · · (Ap)k
(B1)k · · · (Bq)k

ak

k!

∫ t

0

(

1−
u

t

)γ−1
uk+δ−1du,

and now, making a simple change of variable and evaluating the resulting inte-
gral, we obtain

0D
−γ
t

{

tδ−1
pFq (A1, · · · , Ap;B1, · · · , Bq; at)

}

= tγ+δ−1

×

∞
∑

k=0

(A1)k · · · (Ap)k Γ(δ + k)

(B1)k · · · (Bq)k Γ(δ + γ + k)

aktk

k!
, Re(δ) > 0,

that is,

0D
−γ
t

{

tδ−1
pFq (A1, · · · , Ap;B1, · · · , Bq; at)

}

=
Γ(δ)

Γ(δ + γ)
tδ+γ−1

×p+1 Fq+1 (A1, · · · , Ap, δ;B1, · · · , Bq, δ + γ; at) ,Re(γ) > 0,Re(δ) > 0. (12)
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Then, from (9) and (12), for Re(µ) ≥ 0:

0D
µ
t

{

tδ−1
pFq (A1, · · · , Ap;B1, · · · , Bq; at)

}

=

dn

dtn

{

Γ(δ)

Γ(δ + n− µ)
tδ+n−µ−1

p+1Fq+1 (A1, · · · , Ap, δ;B1, · · · , Bq, δ + n− µ; at)

}

,

with Re(n − µ) > 0.
Using (1), we get

0D
µ
t

{

tδ−1
pFq (A1, · · · , Ap;B1, · · · , Bq; at)

}

=
Γ(δ)

Γ(δ + n− µ)

×
∞
∑

k=0

(A1)k · · · (Ap)k(δ)k
(B1)k · · · (Bq)k(δ + n− µ)k

ak

k!

dn

dtn

{

tk+δ+n−µ−1
}

=
Γ(δ)

Γ(δ − µ)
tδ−µ−1
p+1 Fq+1 (A1, · · · , Ap, δ;B1, · · · , Bq, δ − µ; at) ,

Re(µ) ≥ 0,Re(δ) > 0. (13)

6. Kinetic Equations

If we integrate the standard kinetic equation

DtNi(t) =
d

dt
Ni(t) = −ciNi(t), ci > 0, (14)

we obtain [4, p. 58]
Ni(t)−Ni(0) = −ciD

−1
t Ni(t), (15)

whereD−1
t is the Riemann-Liouville integral operator (8). Back to Haubold and

Mathai [7], i is the number of density of species, Ni = Ni(t) and Ni(0) = N0 is
the number density of that species at time t = 0.

We have [2, p. 182]

L
{

D−ν
t ϕ(t)

}

= s−νΦ(s), (16)

where

L{ϕ(t)} = Φ(s) =

∫ ∞

0
e−stϕ(t)dt, Re(s) > 0. (17)

In 2008 Saxena and Kalla [14] considered the following equation

N(t)−N0f(t) = −cνD−ν
t N(t), Re(ν) > 0, c > 0
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and obtained its solution as:

N(t) = N0

∞
∑

k=0

(−1)k
ckν

Γ(kν)
tkν−1 ∗ f(t), (18)

where

tkν−1 ∗ f(t) =

∫ t

0
(t− u)kν−1f(u)du.

Result (18) can be proved by using the convolution theorem for Laplace
Transform, for more details we can refer to Saxena et al. [16, p. 661].

7. A Generalized Fractional Kinetic Equation

Here we consider the following more general fractional kinetic equation

cµD−µ
t N(t)−N0f(t) = −cνD−ν

t N(t), (19)

with Re(µ) ≥ 0,Re(ν) > 0, c > 0, N0 > 0 is a constant.
It follows from (16) that

cµs−µL{N(t)} −N0F (s) = −cνs−νL{N(t)} ,

which implies

L{N(t)} =
N0

cµ
F (s)

s−µ [1 + cν−µsµ−ν ]

provided s > c, this leads to

L{N(t)} =
N0

cµ

[

∞
∑

k=0

(−1)kc(ν−µ)ks(µ−ν)k

]

sµF (s)

=
N0

cµ

[

sµF (s) +
∞
∑

k=1

(−1)kc(ν−µ)ks(µ−ν)ksµF (s)

]

. (20)

Now, it is necessary to consider L{Dµ
t f(t)} :

According to (9)

L{Dµ
t f(t)} = L

{

Dn
[

Dµ−n
t f(t)

]}

= L
{

Dn
[

D
−(n−µ)
t f(t)

]}

= L{Dng(t)} ,

where

g(t) = D
−(n−µ)
t f(t) =

1

Γ(n− µ)

∫ t

0
(t− u)n−µ−1f(u)du, (21)
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Re(n− µ) > 0.

It is well known that for n = 1, 2, 3, · · ·

L
{

f (n)(t)
}

= L{Dnf(t)} = snF (s)− sn−1f(0)− · · · − f (n−1)(0),

therefore,

L{Dµ
t f(t)} = snL{g(t)} − sn−1g(0) − · · · − g(n−1)(0). (22)

Also,

L{g(t)} = L
{

D
−(n−µ)
t f(t)

}

= s−(n−µ)F (s),

where we have used (16).
Replacing the previous result in (22) yields

L{Dµ
t f(t)} = sµF (s)− sn−1g(0) − · · · − g(n−1)(0),

and assuming that g(t) satisfies the condition

g(0) = g′(0) = g′′(0) = · · · = g(n−1)(0) = 0, (23)

we get that
L{Dµ

t f(t)} = sµF (s). (24)

Now, applying the inverse Laplace transform to (20) and using (24), we
obtain

N(t) =
N0

cµ

[

Dµ
t f(t) +

∞
∑

k=1

(−1)kc(ν−µ)k t(ν−µ)k−1

Γ((ν − µ)k)
∗Dµ

t f(t)

]

with

t(ν−µ)k−1

Γ((ν − µ)k)
∗Dµ

t f(t) =
1

Γ((ν − µ)k)

∫ t

0
(t− u)(ν−µ)k−1Dµ

uf(u) du

= D
−(ν−µ)k
t {Dµ

t f(t)} , Re(ν − µ) > 0, k = 1, 2, 3, · · · .

Then the solution of (19) has the representation

N(t) =
N0

cµ

[

Dµ
t f(t) +

∞
∑

k=1

(−1)kc(ν−µ)kD
−(ν−µ)k
t {Dµ

t f(t)}

]

, (25)

Re(µ) ≥ 0,Re(ν − µ) > 0.
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For µ = 0, we have

N(t) = N0

[

f(t) +

∞
∑

k=1

(−1)kcνkD−νk
t f(t)

]

, Re(ν) > 0, (26)

and this is the correct form of the solution of Saxena and Kalla [14].

8. Special Cases

Some special cases follow from (25):

If f(t) = tδ−1
p Fq (A1, · · · , Ap;B1, · · · , Bq; at), from (21) and (12):

g(t) =
Γ(δ) tδ+n−µ−1

Γ(δ + n− µ)
p+1Fq+1 (A1, · · · , Ap, δ;B1, · · · , Bq, δ + n− µ; at) ,

therefore

g′(t) =
Γ(δ) tδ+n−µ−2

Γ(δ + n− µ− 1) p+1

Fq+1 (A1, · · · , Ap, δ;B1, · · · , Bq, δ + n− µ− 1; at) ,

g′′(t) =
Γ(δ) tδ+n−µ−3

Γ(δ + n− µ− 2) p+1

Fq+1 (A1, · · · , Ap, δ;B1, · · · , Bq, δ + n− µ− 2; at) ,

g(n−1)(t) =
Γ(δ) tδ−µ

Γ(δ − µ+ 1)p+1

Fq+1 (A1, · · · , Ap, δ;B1, · · · , Bq, δ − µ+ 1; at) ,

and taking Re(δ − µ) > 0, the condition (23) is satisfied.

Applying successively (13) and (12)

D
−(ν−µ)k
t Dµ

t

{

tδ−1
pFq (A1, · · · , Ap;B1, · · · , Bq; at)

}

=

Γ(δ)

Γ(δ − µ)
D

−(ν−µ)k
t

{

tδ−µ−1
p+1Fq+1 (A1, · · · , Ap, δ;B1, · · · , Bq, δ − µ; at)

}

=

Γ(δ) t(ν−µ)k+δ−µ−1

Γ((ν − µ)k + δ − µ)
p+1Fq+1 (A1, · · · , Ap, δ;B1, · · · , Bq, (ν − µ)k + δ − µ; at) ,

Re(µ) ≥ 0,Re(δ − µ) > 0,Re(ν − µ) > 0,Re(δ) > 0, k = 1, 2, 3, · · · .
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Then, substituting this expression in (25) and using (13), we get

N(t) =
N0

cµ
Γ(δ)tδ−µ−1

[

1

Γ(δ − µ)
p+1Fq+1 (A1, · · · , Ap, δ;B1, · · · , Bq, δ − µ; at)+

∞
∑

k=1

(−1)k(ct)(ν−µ)k

Γ((ν − µ)k + δ − µ)
p+1Fq+1 (A1, · · · , Ap, δ;B1, · · · , Bq, (ν − µ)k + δ − µ; at) ,

that is,

N(t) =
N0

cµ
Γ(δ)tδ−µ−1

[

1

Γ(δ − µ)
p+1Fq+1 (A1, · · · , Ap, δ;B1, · · · , Bq, δ − µ; at)−

(ct)ν−µ
∞
∑

k=0

(−1)k(ct)(ν−µ)k

Γ((ν − µ)k + ν + δ − 2µ)
×

p+1Fq+1 (A1, · · · , Ap, δ;B1, · · · , Bq, (ν − µ)k + ν + δ − 2µ; at)
]

, (27)

Re(µ) ≥ 0,Re(δ − µ) > 0,Re(ν − µ) > 0,Re(δ) > 0.

Particular Cases of (27):

(I) If Aj = 0 for any j = 1, · · · , p, then for f(t) = tδ−1 :

N(t) =
N0

cµ
Γ(δ)tδ−µ−1

[

1

Γ(δ − µ)
−

(ct)ν−µ
∞
∑

k=0

(−1)k(ct)(ν−µ)k

Γ((ν − µ)k + ν + δ − 2µ)

]

=
N0

cµ
Γ(δ)tδ−µ−1

[

1

Γ(δ − µ)
−

(ct)ν−µEν−µ,ν+δ−2µ(−cν−µtν−µ)
]

, (28)

Re(µ) ≥ 0,Re(δ − µ) > 0,Re(ν − µ) > 0,Re(δ) > 0,

and for µ = 0, we obtain

N(t) = N0Γ(δ)t
δ−1

[

1

Γ(δ)
− (ct)νEν,ν+δ(−cνtν)

]

, (29)

Re(δ) > 0,Re(ν) > 0.
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Now, if δ = 1 in (28), then for f(t) = 1

N(t) =
N0

cµ
t−µ

[

1

Γ(1− µ)
− (ct)ν−µEν−µ,ν−2µ+1(−cν−µtν−µ)

]

, (30)

0 ≤ Re(µ) < 1,Re(ν − µ) > 0,

this for µ = 0 produces

N(t) = N0 [1− (ct)νEν,ν+1(−cνtν)] , Re(ν) > 0. (31)

(II) If p = q = 0, then for f(t) = tδ−1
0F0(−;−;−at) = tδ−1e−at:

N(t) =
N0

cµ
Γ(δ)tδ−µ−1

[

1

Γ(δ − µ)
1F1 (δ; δ − µ;−at)−

(ct)ν−µ
∞
∑

k=0

(−1)k(ct)(ν−µ)k

Γ((ν − µ)k + ν + δ − 2µ)
×

1F1(δ; (ν − µ)k + ν + δ − 2µ;−at)] , (32)

Re(µ) ≥ 0,Re(δ − µ) > 0,Re(ν − µ) > 0,Re(δ) > 0.

Making µ = 0,

N(t) = N0Γ(δ)t
δ−1

[

1

Γ(δ)
e−at − (ct)ν ×

∞
∑

k=0

(−1)k(ct)νk

Γ(νk + ν + δ)
1F1(δ; νk + ν + δ;−at)

]

, (33)

Re(δ) > 0,Re(ν) > 0.

(III) If p = 1, q = 0, then for f(t) = tδ−1
1F0(ρ;−;−at) = tδ−1(1 + at)−ρ :

N(t) =
N0

cµ
Γ(δ)tδ−µ−1

[

1

Γ(δ − µ)
2F1 (ρ, δ; δ − µ;−at)−

(ct)ν−µ
∞
∑

k=0

(−1)k(ct)(ν−µ)k

Γ((ν − µ)k + ν + δ − 2µ)
×

2F1(ρ, δ; (ν − µ)k + ν + δ − 2µ;−at)] , (34)



SOLUTION OF CERTAIN... 447

Re(µ) ≥ 0,Re(δ − µ) > 0,Re(ν − µ) > 0,Re(δ) > 0.

If we set µ = 0 in the above result, then we get

N(t) = N0Γ(δ)t
δ−1

[

1

Γ(δ)
(1 + at)−ρ − (ct)ν ×

∞
∑

k=0

(−1)k(ct)νk

Γ(νk + ν + δ)
2F1(ρ, δ; νk + ν + δ;−at)

]

, (35)

Re(δ) > 0,Re(ν) > 0.

(IV) If p = q = 1, A1 = 1, B1 = δ = w + 1, then for

f(t) =
tw

Γ(w + 1)
1F1(1;w + 1; at) = Et(w, a) :

N(t) =
N0

cµ
tw−µ

[

1

Γ(w − µ+ 1)
1F1 (1;w − µ+ 1; at)−

(ct)ν−µ
∞
∑

k=0

(−1)k(ct)(ν−µ)k

Γ((ν − µ)k + ν + w − 2µ + 1)
×

1F1(1; (ν − µ)k + ν + w − 2µ + 1; at)] , (36)

that is,

N(t) =
N0

cµ
[

Et(w − µ, a)− cν−µ ×

∞
∑

k=0

(−1)kc(ν−µ)kEt((ν − µ)k + ν + w − 2µ, a), (37)

Re(µ) ≥ 0,Re(w − µ+ 1) > 0,Re(ν − µ) > 0,Re(w + 1) > 0.

If µ = 0 in (37),

N(t) = N0

[

Et(w, a)− cν
∞
∑

k=0

(−1)kcνkEt(νk + ν + w, a)

]

, (38)

Re(ν) > 0,Re(w + 1) > 0.
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Figure 1: N(t) for f(t) = t2, N0 = 1, c = 0.25, ν = 5 and different
values of µ; black µ = 0 blue µ = 1

2 cyan µ = 1 green µ = 3
2 red

µ = 2

9. Graphic Representation

In this section some figures are presented which show the behavior of the solu-
tion N(t) for different f(t) and selected values of the parameters.

10. An Alternative Method

Here we extended the fractional kinetic equation (19) to become

cµD−µ
t N(t)−N0f(t) = −cν+µD−ν−µ

t N(t) (39)

with Re(µ) ≥ 0,Re(ν) > 0, c > 0, N0 > 0 is a constant.

Using the techniques from Al-Saqabi and Tuan [1] for solving differential
equations, by applying the operator (−cν)mD−mν

t to both sides of (39), we get

(−cν)mD−mν
t

{

cµD−µ
t N(t)

}

− (−cν)mD−mν
t

{

(−cν) cµD−ν−µ
t N(t)

}
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Figure 2: N(t) for f(t) = t2, N0 = 1 = c, ν = 5 and different values
of µ black µ = 0 purple µ = 1

4 green µ = 1
2 red µ = 3

4 blue µ = 1

= N0 (−cν)mD−mν
t {f(t)} , (40)

where ν > 0 and m = 0, 1, 2, · · · . Taking the sum over m yields

cµ
∞
∑

m=0

(−cν)mD−mν−µ
t {N(t)} − cµ

∞
∑

m=0

(−cν)m+1 D
−ν(m+1)−µ
t {N(t)}

= N0

∞
∑

m=0

(−cν)mD−mν
t {f(t)} .

Changing the index in the second series, we obtain

cµ
∞
∑

m=0

(−cν)mD−mν−µ
t {N(t)} − cµ

∞
∑

m=1

(−cν)mD−νm−µ
t {N(t)}

= N0

∞
∑

m=0

(−cν)mD−mν
t {f(t)} ,
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Figure 3: N(t) for f(t) = 1, N0 = 1 = c, µ = 0 and different values
of ν green ν = 1

2 red ν = 3
4 gray ν = 5

4 sienna ν = 3
2 black ν = 7

4

and by canceling out equal terms on the left of this equation it reduces to

cµD−µ
t {N(t)} = N0

∞
∑

m=0

(−cν)mD−mν
t {f(t)} . (41)

For µ = 0, we obtain the correct form of the solution of Saxena and Kalla
[14].
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