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1. Introduction

Fractional kinetic equations are studied to determine certain physical phenom-
ena governing diffusion in porous media, reaction and relaxation in complex
systems, anomalous diffusion etc. In this connection, one can refer to the books
by Hilfer [5], Kiryakova [7], Podlubny [12], and other works in this field. Frac-
tional kinetic equations are studied by Hille and Tamarkin [6], Glockle and
Nonnenmacher [3], Saichev and Zaslavsky [13], Saxena et al. [15-17], and Za-
slavsky [23], among others for their importance in the solution of certain applied
problems.

Saxena et al. [18-19] have investigated the solution of certain fractional
differ-integral equations, related to reaction diffusion equations. Transform
technique is used and solutions are expressed in terms of the Mittag-Leffler and
H-functions [10, 8.

Saxena and Kalla [14] have obtained solution of a generalized fractional
kinetic equation and gave some examples. Here we give a correct version of
their solution and examples given by them. We introduce a more general form
of fractional kinetic equation and obtain its solution using Laplace transform.
An alternative method of deriving solutions of such equations is also given.

2. The Generalized Hypergeometric Function

The generalized hypergeometric function ,Fj is defined by [21, p. 19-20]

© (Ap - (AN, 2F
pFQ(Alv"'7Ap;Blv"',Bq;z)_ZM_. (1)

1, if k=0,
(@) = et —ala+ 1)(a+2)(a+k—1), ifk=1,23,--.

p and ¢ are positive integer or zero, the variable z, the numerator parame-
ters Aq,---, Ay, and the denominator parameters By,--- , B, take on complex
values, provided that B; #0,—-1,-2,---; j=1,--- ,q.

The , F, series:

(i) converges for |z| < oo if p < g,

(ii) converges for |z| < 1if p=g¢+ 1, and
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(iii) diverges for all z, z # 0, if p > ¢ + 1.

As particular cases of (1) we have,

e’ = oFo(—;—;2). (2)
(1—2)"" = 1F(a;—2). (3)

3. Mittag-Leffler Function

In 1903, the Swedish mathematician Gosta Mittag-Leffler [10] defined and stud-
ied a function, now called as Mittag-Lefller function and defined as:

. 4

Sy R 0
k=0

In 1905, this function was generalized by Wiman [22] as

0 k

Eoplz) = ;;) m, Re(a), Re(8) > 0. (5)

The integral representation of this function is as follows:

Y+ico s _ 3
Bao®) = g5 | a9 s (®

where the path of integral separates all poles of I'(s) and I'(1—s). This represen-
tation can be used to express the Mittag-Leffler function in terms of H-function.
4. Mellin-Ross Function

It is defined as [9],

Ei(v,a) *t”i (at)* " Fi(1;v + 1;at) (7)
¢ T(k+v+1) T+1) = e
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5. Riemann-Liouville Operator

Many authors have studied operators of fractional calculus, due to their ap-
plications in solving integral and differintegral equations and fractional order
models.

The Riemann-Liouville fractional integral operator is defined by [9], [11],
[12]:

1 €T
D7) = i [ @7 b Re() >0, 220, ()
') Jo
whereas the Riemann-Liouville fractional differential operator is defined by
oDy f(z) = D" [oDy ™" f(z)], Re(n) 20,z >0,n=[u] + 1L (9)

For f(t) = t° we have ([9], [11], [12])

. (6 + 1)
D = —— T gy hd 1) —1,t 1
0 F((5+’)/+1) ) Re(7)>07Re()> ) >0 (0)

and

reo+1) e
r'o—p+1) ’
Now, we establish some results which will be used next in the paper.
From (1) and (8), for Re(y) >0

oD = Re(i) > 0,Re(0) > —1,¢ > 0. (11)

1
L(v)

)k a” /t< U)W—l btb—1
E 1—-
X k T ; U du,

and now, making a simple change of variable and evaluating the resulting inte-
gral, we obtain

oD, {tH DFy (A, Ay By, By at) } .

Ol)t_7 {téil qu (Alv"' 7AI7;Bla"' an§at) } :t’Héil

(AP D0+ k) aFtk
XZ Bx L0+~ +Fk) k! » Re(9) >0,
that is,
_ _ INE)! _
v J6-1 . ) _ S+vy-1
ODt {t qu (Al, ,Ap,Bl, ,Bq7at) } F((S—l—’)/)t

Xp+1 Fyp1 (A1, -+ Ay, 65 B, - -+, By, 0 +7;at) ,Re(y) > 0,Re(d) > 0. (12)
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Then, from (9) and (12), for Re(u) > 0:
ODéL{té—l oFy(A1,-- Ay By, -+, By;at) }:

LT e
£ ) 2\ st Foi(Ar. - A5 Bi.--- B e
dtm {F((S—FTL-/.L)t p+1 q+1( 1 ; pv(sa 1 ) q75+n :U’aat) )

with Re(n — u) > 0.

Using (1), we get

I'(9)
L'+mn—p)

. Al ~ (Ap)k(O)r ak dn k+d4+n—p—1
- - t n—u
XZ (B1)x )(5—|—n— )kk!dt”{ }

ODéL{té—l qu(A1,~“ ,Ap; By, -+ ,Bq;at) }:

ING) L
- ﬁtiﬁf 1Fq+1 (A1, ,A,,0; By, , By, 6 — p;at),

Re(p) > 0,Re(d) > 0. (13)

6. Kinetic Equations

If we integrate the standard kinetic equation

d

Nz(t) = —CiNi(t), c; >0, (14)
we obtain [4, p. 58]
Ni(t) — N;(0) = —¢; DNy (), (15)

where D; ! is the Riemann-Liouville integral operator (8). Back to Haubold and
Mathai [7], 7 is the number of density of species, N; = N;(t) and N;(0) = Ny is
the number density of that species at time ¢ = 0.

We have [2, p. 182]

LD p(t)} = s7VD(s), (16)

where

LA{p(t)} = P(s) = / e Sto(t)dt, Re(s) > 0. (17)
0
In 2008 Saxena and Kalla [14] considered the following equation
N(t) — Nof(t) = —c"D;"N(t), Re(r)>0,c>0



442 A. Shafee, L. Galué, S. Kalla

and obtained its solution as:
& kv
N(t) = No Y (—1)F et =1 (¢ 18

where .
() = [ (- 0 )
0

Result (18) can be proved by using the convolution theorem for Laplace
Transform, for more details we can refer to Saxena et al. [16, p. 661].

7. A Generalized Fractional Kinetic Equation

Here we consider the following more general fractional kinetic equation
D HN(t) — Nof(t) = —c”"D;VN(t), (19)

with Re(u) > 0,Re(r) > 0,¢ >0, Ny > 0 is a constant.
It follows from (16) that

HsTHLIN(t)} — NoF(s) = —c"s"L{N(t)},

which implies

. No F(S)
L {N(t)} - C_N g—H [1 + cy—usu—u]
provided s > ¢, this leads to
N o0
E{N Vo [Z (v—p)k (u v)k SMF(S)
0
N
= ) + Z (k)b ght P (s) (20)

Now, it is necessary to consider £ {D.' f(t)} :
According to (9)

ciofrwy = cf{or[prrrw)}=c{p" [p;" M rw)] |
= L{D"g(1)},

where
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Re(n — p) > 0.

It is well known that for n =1,2,3,---

£{fM)} = L{D" (1)} = s"F(s) = 5" £(0) =+ = FD(0),
therefore,
L{DYF(®)} = s"L{g()} = s"~g(0) = -+ = gD (0). (22)
Also,

L9t} = £{D; " ()} = s~ IR(s),

where we have used (16).
Replacing the previous result in (22) yields

LADLf(t)} = s"F(s) — 5" 'g(0) — -+ — g™ 1(0),
and assuming that g(t) satisfies the condition
9(0) = g'(0) = g"(0) = - = g"D(0) =0, (23)

we get that
LAD{f(t)} = s"F(s). (24)

Now, applying the inverse Laplace transform to (20) and using (24), we
obtain

o No i S k: (V )k t( k-1 "
N(t) = —7 | DV +; S (CEID) D f(t)
with
t(l/—u)k‘—l 1 t
A I SN APPRY v
(R A (7= 6= g an

= Dt_(V_u)k {fo(t)}a Re(V_M) > Oak - 172737"'
Then the solution of (19) has the representation

N = 20 Do) + S0k I Dy | (29)
k=1

Re(n) = 0,Re(v — p) > 0.
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For p = 0, we have
N(t) = No | f(t) + Y (DD f(t) |, Re(v) >0,
k=1

and this is the correct form of the solution of Saxena and Kalla [14]

8. Special Cases

Some special cases follow from (25):

If f(t)= tgleq (Ar,--- ,Ap; By, -+, Bg;at), from (21) and (12):

T (5) t5+"*M* 1

90) = gy v Fest (A Ay 6By By 6t = piat),
therefore
I(8) t3+n—h-2
g'(t) = ©)

- Fypr (A, Ay, 8 Br, -+ By, 6 +n—p—lat),
F(6+n_u_1)p+1 (I+1( 1 P 1 q n H a’)

T(5) t5+n—u—3

"(t) = F, Ay, A, 0By, , By, 0 —u—2;at
g () F(5+n—ﬂ—2)p+1 q+1( 1 s Lp, Uy, D1, » Pg, +n 1% 70/),
~ INC R
e-Dpy=—"  F Ay, A, 0By, , By, 0 — 1;at
g () F((S_/J‘i’l)erl q+1( b ) £ps U9 D1y s Pgs W+ aa)a

and taking Re(d — p) > 0, the condition (23) is satisfied.
Applying successively (13) and (12)

Dt_(lj_u)kDf {téil pFy (Ag,--- s Ap; Br, -+, By; at) }

Dt_(V_H)k {t5—u—1 »

+1Fq+1 (Alv"' 7Ap75;B17"' ,Bq,5—u;at) }
T(5) tw—mk+d—p=1
T((v— )k +6 — p) prifyrn (Avs o Ay, 80 Buy - By, (v — p)k +0 — s at)

Re(p) > 0,Re(d — p) > 0,Re(v — p) > 0,Re(d) >0,k =1,2,3,--- .
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Then, substituting this expression in (25) and using (13), we get

N0 1

N(t) = F(fs)td_”_l TG - 1) prtFyr1 (Ar, - Ap,0;B1, -+, By, 6 — p;at) +

> —1)k(ct) vk
ZF(( ) ( ) u) p+1Fq+1 (Al,"' ,Ap,(S;Bla"' ’Bqa(V—M)k‘f‘(S—MSat)’

— (v—pk+6—
that is,
N(t) = o F((S)t m p+1Fq+1 (Al, e ,Ap,6; Bl, e ,Bq,(5 — M Clt) —

(v—w)k
v—p Ct)
(ct) Z k YU+ —2p)

1P (Ar, - Ay, 03By, By, (v — p)k + v+ 6 = 2p;at) ], (27)
Re(p) > 0,Re(d — p) > 0,Re(v — p) > 0,Re(d) > 0.
Particular Cases of (27):
(I) If Aj =0 for any j =1,--- ,p, then for f(t)=¢""1:

Ny

N(t) = —r(a)twl[ !

T —p)
e (—=1)F(ct)lvmk
(ct) 2:: T((v — )k + v 10 —2n)

cH

T —p)
() ™ By 5o (—c" P71 (28)

Re(p) > 0,Re(d — ) > 0,Re(v — ) > 0,Re(d) > 0,

and for p = 0, we obtain

N(t) = NyT(8)£! ﬁ () Byrs(—t)| (29)

Re(d) > 0,Re(r) > 0.
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Now, if 6 =1 in (28), then for f(t) =

No,_, 1

N(t)=—t T

— ()" By pp—appr (=TT (30)

0 <Re(p) < 1,Re(r —pu) >0,

this for 4 = 0 produces

N(t) = No [1 = (ct)’ Eypar(—c"t)], Re(v) > 0. (31)
(IT) If p = ¢ = 0, then for f(t) =t~ oFy(—; —; —at) = t0"le
N(t) = Mgyt [ﬁ VB (558 — s —at) ~
(ct)™” HZ 1)k j-t)u(:lé)k 20)
1F1(5; (V_H)k+V+5—2M§ —at)], (32)

Re(p) > 0,Re(d — ) > 0,Re(v — ) > 0,Re(6) > 0.

Making p =0,
1
_ 6—1 | _+ _—at v
N(t) = NoI'(d)t 1“(6)6 (ct)” X
i PGk 4 vt 8 —at) (33)
= I( Vk —|— v+0) ’ 7 ’

Re(d) > 0,Re(r) > 0.
(ITI) If p = 1,q = 0, then for f(t) = t°= 1 Fy(p; —; —at) =t~ (1 +at)™"

N
N(t) = cor(é)taﬂkl [m 21 (p, 056 — pu; —at) —
(v—p)k
v—p Ct)
(ct) Z k Yv+o—2p)

2y (p, 5; (v—pk+v+6—2u—at)], (34)
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Re(p) > 0,Re(d — p) > 0,Re(v — p) > 0,Re(d) > 0.

If we set p = 0 in the above result, then we get

1
N(t) = NoT'(6)t" ™ | —=(1 +at) ™" — (ct)”
(1) ol(d)t [F(d)( + at) (ct) X
Eoo Het) Fi(p,0;vk + v+ 0; —at) (35)
kzor V:IC+ +5) 21\ P, 03 ) )

Re(d) > 0,Re(v) > 0.

(IV)Ifp=q=1, A1 =1,B; = =w+ 1, then for

1) = T

Tl) 1B (Lw+ 1;at) = Ei(w,a) :

Ny 1
Nt)=—t""H*|— o 1 (Liw— 1:at) —
() P [F(w—,u—i—l)l 1(aw ®+ ,CL)

1)k (ct) =k
v—p
(ct) Z k+1/+w—2u+1)

1Fi(L (v —pwk+v+w—2u+ 1;at)], (36)
that is,

i C=EB, (v — Wk + v+ w — 2u,a), (37)

k
Re(p) > 0,Re(w — pp+1) > 0,Re(v — p) > 0,Re(w + 1) > 0.

If 4 = 0 in (37),
N(t) = Ny | Et(w, a) —c”z k”kEt vk+v+w,a)l|, (38)
k=0

Re(v) > 0,Re(w + 1) > 0.
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Figure 1: N(t) for f(t) = t?, Ng =
values of p; black g = 0 blue p =
w=2

c = 0.25,v = 5 and different

L
% cyan p = 1 green pu = % red

9. Graphic Representation
In this section some figures are presented which show the behavior of the solu-
tion N (t) for different f(t) and selected values of the parameters.
10. An Alternative Method
Here we extended the fractional kinetic equation (19) to become
D, MN(t) — Nof(t) = —c" D, " "N (t) (39)
with Re(u) > 0,Re(r) > 0,¢ >0, Ny > 0 is a constant.
Using the techniques from Al-Sagabi and Tuan [1] for solving differential
equations, by applying the operator (—c”)™ D; ™ to both sides of (39), we get

(=)™ D™ { DN (1) = (=)™ DF™ { (=) D TN (1) }
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N@®
1000
500T
0 T ) i
0 2.5 5 % 10
t
500
Figure 2: N(t) for f(t) =t?, Ny = 1 = ¢,v = 5 and different values
of pblack =0 purple,u:i greenu:% redu:% blue p =1
= No (=c")" D™ {f(t)}, (40)

where v > 0 and m =0,1,2,---

oo

o Z (—

m=0

Changing

c"z

. Taking the sum over m yields

v\m —my— N \m —v(m+1)—
)" DTN} = e Y (=) DTN (1)
m=0
= Z D™ S}
the index in the second series, we obtain
mD;TREIN(E)} — Z m DTN}

Mo (-

m=0

"D}
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0.57

0.257

-0.257

= 1= ¢, = 0 and different values
gray v =

Figure 3: N(t) fo () 1,
ofygreeny—% d v % siennayzg blackyzg

ot

and by canceling out equal terms on the left of this equation it reduces to
Dy PN} = Noz D)} (41)

For ;1 = 0, we obtain the correct form of the solution of Saxena and Kalla
[14].
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