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Abstract: Prediction and interpolation may be considered as two major
purposes of time series analysis. Selecting a proper model in time scope as a
member of ARIMA models is an important task and is required many steps
to obtain the proper model. Some nonparametric regression methods such as
splines have many applications in various fields. In this article, spline methods
are applied to estimate time series models in a simulation study. In the simula-
tion study, some data sets are generated of various ARIMA models. Then, the
basic ARIMA model that is considered for generating data is fitted to each of
the data sets as the proper model and the fitness of the models are investigated.
Besides, smoothing spline method is applied for obtaining the proper pattern of
the same data sets. Furthermore, fitness of these methods is compared by Sum
of Square Errors (SSE) criterion to determine the more appropriate method
and determining performance of smoothing spline.
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1. Introduction

One of the most commonly used methods in the literature of time series analysis

Received: July 7, 2014 c© 2014 Academic Publications



432 R. Alimohammadi

is ARIMA models. An Autoregressive Integrated Moving Average (ARIMA)
model is generally referred to as an ARIMA(p, d, q), where parameters p, d

and q are non-negative integers that refer to the order of the autoregressive,
integrated, and moving average parts of the model, respectively. The model of
time series Zt can be written as:

ΦP (B)(Zt) = (1−B)dθq(B)at, (1)

where ΦP (B) is the autoregressive polynomial part of the backward operator B
of order p, θq(B) is the moving average polynomial of order q, d is the degree
of differentiating and at is a white noise time series. For more information, the
reader can be referred to Box and Jenkins, [4].

2. Smoothing Spline

Basically, minimizing penalized sum of squares criterion is the base of smoothing
spline. The criterion includes two components, goodness of fit and smoothness
as follows:

S(g) =
n∑

i=1

(yi − g(ti))
2 + λ

∫ b

a

(g”(t))2dt, (2)

where g is any twice-differentiable function on interval [a, b], g” is the second
derivative of g, λ is smoothing parameter and n is the sample size.

In relation (2), the penalized least squares estimator ĝ is defined as the
minimizer of S(g) over the class of all twice differentiable functions g. This
minimizer function is called smoothing spline.

The proper value of smoothing parameter (λ) may be choosen by two ma-
jor methods, namely Cross Validation (CV) and Generalized Cross Validation
(GCV). To study more details, the author can be referred to Green and Silver-
man [1].

3. Simulation Study

In this section, a simulation study is carried out to assess fitness of smoothing
splines to time series data and its performance is compared with the related
ARIMA model, that is the models witch is applied to generate data in simula-
tion. As some references, simulation study of time series and spline models are
discussed by Cryer and Chan [2], Pffaf [3], and Wang [5].
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In the simulation study, sample sizes n = 50, n = 100, n = 250, n = 500
and n = 1000 of different ARIMA models are considered to assess the fitness
of spline method.

Tables 1, 2 and 3 demonstrate the fitness of ARIMA and smoothing spline
(S.S) methods for each of the data sets generated from the ARIMA models.

n=50 n=50 n=100 n=100
model order S.S ARIMA S.S ARIMA

AR 1 5.21 40.94 19.66 90.28
AR 2 0 39.52 17.1 84.42
AR 3 0 37.37 15.15 84.82

MA 1 59.76 165.63 125.84 332.61
MA 2 59.2 624.4 118.84 1141.26
MA 3 68.45 2024.41 148.23 3903.28

ARMA (1,1) 44.4 38.57 96.37 90.32
ARMA (2,2) 45.17 32.63 99.77 84.1
ARMA (2,1) 8.56 39.65 114.5 83.56
ARMA (1,2) 31.79 39.91 66.24 85.59

ARIMA (1,1,1) 2.63 40.97 10.87 84.42
ARIMA (2,1,2) 2.42 32.8 9.74 74.751
ARIMA (2,1,1) 0 39.85 8.89 83.65
ARIMA (1,1,2) 6.78 40.16 13.5 85.62

Table 1: SSE of S.S and ARIMA for n = 50 and n = 100

Now, test of difference between means of fitted spline (ŷi) and the amount
of simulated data (yi), is done as follows:

H0 : ǭ = 0 versus H1 : ǭ 6= 0, (3)

where ǫi = yi − ŷi and ǭ is the mean of ǫ’s in the simulated data sets. The test
is carried out for all of the simulated data sets of the ARIMA models. Table 4
demonstrates p-values of hypothesis test (3) of for all of the considered models.

However, normality of ǭ is acceptable for all of the sample sizes based on
Central Limit Theorem.

In Table 4, p-value of test (3) is obtained. The amounts in Table 4 show
that for all of the data sets, H0 is accepted and the tests are not meaningful.
Therefore, equality of means of the data sets and the fitted spline is accepted
for all of the cases. Then, despite of generating the main data from AR, MA,
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n=50 n=50 n=100 n=100
model order S.S ARIMA S.S ARIMA

AR 1 77.36 252.03 286.02 471.23
AR 2 89.44 247.31 563.07 466.94
AR 3 74.48 241.84 1052.89 465.21

MA 1 337.28 913.52 675.56 1916.7
MA 2 333.4 3245.51 691.13 7079.86
MA 3 421.01 11828.63 872.6 25943.87

ARMA (1,1) 257.2 251.86 490.4 469.64
ARMA (2,2) 261.4 246.61 491.33 463.42
ARMA (2,1) 298.66 243.87 537.69 465.88
ARMA (1,2) 178.09 243.71 367.5 464.8

ARIMA (1,1,1) 67.8 247.79 214.09 471.41
ARIMA (2,1,2) 60.72 241.6 203.18 458.98
ARIMA (2,1,1) 78.96 243.89 317.72 466.84
ARIMA (1,1,2) 55.5 243.72 147.87 465.65

Table 2: SSE of S.S and ARIMA for n = 250 and n = 500

model order S.S n=1000 ARIMA n=1000

AR 1 775.66 1002.2
AR 2 1120.94 1000.31
AR 3 2190.74 994.49

MA 1 1381.77 3899.47
MA 2 1423.15 14450.12
MA 3 1810.19 52029.51

ARMA (1,1) 1025.98 1002.14
ARMA (2,2) 1025.46 988.58
ARMA (2,1) 1114.79 998.38
ARMA (1,2) 749.32 999.68

ARIMA (1,1,1) 668.48 1002.24
ARIMA (2,1,2) 725.79 990.81
ARIMA (2,1,1) 902.02 998.38
ARIMA (1,1,2) 637.34 999.69

Table 3: SSE of S.S and ARIMA for n = 1000
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n=50 n=100 n=250 n=500 n=1000
model order

1 0.82 0.73 0.79 0.74 1
AR 2 0.93 0.82 0.95 1 1

3 0.95 0.76 0.96 0.9 0.78

1 1 1 1 0.87 0.82
MA 2 1 1 1 0.83 0.85

3 1 0.78 0.85 0.85 0.84

(1,1) 1 1 1 1 1
ARMA (2,2) 1 1 1 1 1

(2,1) 0.98 1 1 1 1
(1,2) 1 1 1 1 1

(1,1,1) 0.82 0.71 0.73 0.67 0.8
ARIMA (2,1,2) 0.87 0.74 0.77 0.64 0.85

(2,1,1) 0.96 0.71 0.88 0.8 1
(1,1,2) 0.88 0.78 0.69 0.58 1

Table 4: P-Values of test of hypothesis (3)

ARMA and the generally model ARIMA, smoothing spline has a better perfor-
mance for most of the data sets. On the other hand, for some situations that
the fitted splines are not better, the above results for test (3) show that there
are not meaningful difference between means of the real data sets and the fitted
splines.

4. Conclusion

In this paper, smoothing spline approach is applied for modeling of time series
data in a simulation study. In this purpose, some data sets are generated from
various ARIMA models. Then, performance of two fitted models is assessed,
these methods include original ARIMA models and smoothing spline. The pa-
per results show that spline has an acceptable performance for modeling of time
series data in all of the considered situations. It is an interesting result because
of data sets are generated from the specified ARIMA model, but smoothing
spline has a good fitness for the data from ARIMA models. Finally, application
of smoothing spline is suggested for modeling of time series data, because of
simplicity and precision of the method.
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