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Abstract: This note considers some of the properties and studies the distri-
bution of the eigenvalues of the matrix XXT divided by its trace, where X is
a Hankel random matrix. The results make a novel contribution in the area of
signal processing and noise reduction.
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1. Introduction

Consider a one-dimensional series YN = (y1, . . . , yN ) of length N . Trans-
ferring this series into the multi-dimensional series X1, . . . ,XK with vectors
Xi = (yi, . . . , yi+L−1)

T ∈ RL provides the following trajectory matrix

X = (xi,j)
L,K
i,j=1 =








y1 y2 y3 . . . yK
y2 y3 y4 . . . yK+1
...

...
...

. . .
...

yL yL+1 yL+2 . . . yN








, (1)

where L (2 6 L 6 N − 1) is the window length and K = N − L + 1. The
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trajectory matrix X is a Hankel matrix, which means all the elements along
the diagonal i+ j = const are equal. The square root of the eigenvalues of the
L by L matrix XXT , where XT is the conjugate transpose, are called singular

values of X. The ratio of each eigenvalue λi/
L∑

i=1
λi is the contribution of the

matrix Xi to X, since ||X||2F = tr(XXT ) =
L∑

i=1
λi and ||Xi|| = λi, where λi

(i = 1, . . . , L) are the eigenvalues of XXT and || ||F denotes the Frobenius
norm.

The Hankel matrixX and its corresponding singular values are important in
many areas including time series analysis [8], [10], biomedical signal processing
[17], mathematics [15], energy [11, 4, 16], econometrics [9] and physics [6]. The
distribution of eigenvalues/singular values and their closed form are of great
interest, but this issue has not been considered adequately [14].

Note also that if the series YN is a white noise process, then the trajectory
matrix X will be called a random matrix where each column of X forms a
L-variate normal distribution with zero mean [13], [7], [2]:

Xi = (yi, . . . , yi+L−1)
T
∼ NL(0,G), (2)

where, G is a L× L positive definite matrix, and 0 is a vector of zeros. Then,
the Wishart distribution [18] is the probability distribution of the L×L random
matrix A = XXT :

A ∼ WL(G, v), (3)

where the positive integer v is the number of degrees of freedom, [12].

Theorem1. Let G be a positive-definite matrix with distinct eigenvalues,
XXT

∼ WL(G, v), and set J = v−1XXT . Consider spectral decomposition
G = ZΛZT and J = QΓQT , and let η = (η1, . . . , ηL) and λ = (λ1, . . . , λL) be
the vectors of diagonal elements in Λ and Γ. Then, the following asymptotic
distribution holds as v → ∞:

λ ∼ NL(η, 2Λ
2/v), (4)

where the eigenvalues of J are asymptotically normal, unbiased, and indepen-
dent, with λi recording a variance of 2η2i /v, see [2].

The above theorem works for the situation where the vectors Xi are dis-
tributed independently whilst for the Hankel matrix this is not applicable
as the lagged vectors Xi and Xj are correlated. For example, Xi and Xi+1
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(i = 1, . . . ,K−1) have L−1 similar observations with the following covariance
matrix:

Cov(Xi,Xi+1) =












0 0 0 . . . 0 0
σ2 0 0 . . . 0 0
0 σ2 0 . . . 0 0
0 0 σ2 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . σ2 0












, (5)

where σ2 is the variance of yi. Moreover, it is always of interest to have bounded
eigenvalues whilst in the above case, the magnitude of singular values change
with the series length; increasing the sample size N leads to the increase of λi.

To overcome this issue, we divide XXT by its trace, XXT /
L∑

i=1
λi. This in turn

provides several important properties.

Proposition 1. Let ζ1, . . . , ζL denote eigenvalues of the matrixXXT /
L∑

i=1
λi,

where X is a Hankel trajectory matrix with L rows, and λi (i = 1, . . . , L) are
the eigenvalues of XXT . Thus, we have the following properties:

1. 0 < ζL ≤ . . . ≤ ζ1 < 1,

2.
∑L

i=1 ζi = 1,

3. ζ1 ≥
1
L
,

4. ζL ≤ 1
L
,

5. ζi ∈ ( 1
L
− a, 1

L
+ b) (i = 2, . . . , L− 1), where a, b ∈ [0, 1].

Proof. The first two properties are simply obtained from matrix algebra and
thus not provided here. To prove the third property, the first two properties
are used as follows. The second property confirms

ζ1 + ζ2 + ...+ ζL = 1.

Thus, using the first property, ζ1 ≥ ζi (i = 2, ..., L), we obtain

ζ1 + ζ1 + ...+ ζ1
︸ ︷︷ ︸

L elements

= Lζ1 ≥ 1 ⇒ ζ1 ≥ 1/L.

Similarly, for the fourth property, it is straightforward to show that
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ζL + ζL + ...+ ζL
︸ ︷︷ ︸

L elements

= LζL ≤ 1 ⇒ ζL ≤ 1/L,

since ζL ≤ ζi, i = (1, 2, ..., L − 1), and
∑L

i=1 ζi = 1.

To prove part 5, let us first prove that there exists ζ2 between real numbers
ζ1 and ζL. It is clear that ζL ≤ ζ1 for L ≥ 2. Since ζ1 − ζL ≥ 0, we can then
choose a natural number n, large enough to make 1

n
< ζ1 − ζL. Now, from

the numbers 1
n
, 2
n
, . . . , k

n
select the largest possible natural number k such that

k
n
≤ ζL. Therefore, ζL < k+1

n
. Note that k+1

n
< ζ1 since if we assume k+1

n
≤ ζ1

then 1
n
= k+1

n
− k

n
≥ ζ1−ζL, which is false as n was picked such that 1

n
< ζ1−ζL.

Thus, ζ2 =
k+1
n

satisfies 1
L
≤ ζ1 < ζ2 < ζL ≤ 1

L
. This approach can be used for

other ζi.

The above properties indicate that the distribution of ζi might not even be
symmetric. Particularly the first and last eigenvalues tend to have a skewed dis-
tribution whilst the middle eigenvalue may have an asymptotically symmetric
distribution. Furthermore, it indicates that ζi, particularly ζ1 and ζL, converge
asymptotically to 1

L
. Let us first evaluate the asymptotical behaviour of ζ1

and ζL, for different values of N , generated from a white noise series (for sim-
plicity, L = 10, ζ1 and ζ10 are considered here). Fig. 1 displays the results

for m = 5 × 103 simulations, where ζi =

(
m∑

j=1
ζi,j

)

/m, i = 1, 10. As it ap-

pears from Fig. 1, the gap between ζ1 and ζ10 becomes smaller as the sample
size increases, and both converge to 1

L
. Thus, according to property 5, other

eigenvalues tend to 1
L
.

Let us now consider the theoretical results for L = 2. Consider the random
trajectory matrix X defined in Eq. (1). In this case A = XXT is a square-
symmetric matrix with the following eigenvalues:

λi =
tr(A)±

√

tr2(A)− 4 det(A)

2
, i = 1, 2.

Consequently, the eigenvalues of A/tr(A), ζ1 and ζ2 are as follows:

ζi =
1

2
±

1

2

√

1−
4 det(A)

tr2(A)
, i = 1, 2.

In this case, we expect both ζ1 and ζ2 (or their averages after simulations,
ζ1, and ζ2, respectively) would converge to 0.5 as there are only two eigenvalues.
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Figure 1: The plot of ζi, (i = 1, 10) for different sample size N for a
white noise series.

2. Conclusion

The distribution of the eigenvalues of the matrix XXT /
L∑

i=1
λi was studied and

several properties were introduced. As our future research, the theoretical dis-

tribution of the matrix XXT /
L∑

i=1
λi is of interest to us. Furthermore, in an

ongoing research we are evaluating the applicability of the results found here
for noise reduction of the chaotic series. Additionally, we are applying the prop-
erties obtained here as extra criteria for filtering series with complex structure.
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