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Abstract: In R. Almomani and H. Almefleh [1], the authors formulated
the control problem of heat conduction problem with inverse direction of time
and integral boundary conditions and they show the non-wellposedness of this
problem. In H. Almefleh [2], the author reduced the solution of the control
problem of the inhomogeneous heat equation to the homogeneous case. In
H. Almefleh, R. Almomani [3] the authors established a priori estimate for
the solution of quasi-inverse problem. In this paper we establish a new priori
estimate for the same problem and the same order but with another weight
function. The solution of our problem plays an important role in optimal control
in heat conduction theory and in plasma physics, that is, in those problems
where we have an integral restriction on a function.
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We establish a priori estimate of the solution of
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H. Almefleh, R. Almomani [3] but with another weight function.
By scalar multiplication of (1) in L (Q-) by the function
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and doing the same procedure as of proving (2), we get
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Using T —J— BT , integrating by parts, and taking into account the bound-

ary conditions for the function Uy(z,t), we set the following equalities
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From (4), (5), (6) and (7) we imply the following equality
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We estimate the integrals in the right hand side of (8) by means of the integrals
in the left hand side in the following way:
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As a result, we get the following inequality
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The second term in the right hand side of (9) can be estimated by the first term
using the inequality

>2 da. (10)
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Which is correct for any continuous function U(z) and this function turns to
zero at = 0, that is U(0) = 0.

Thus the right hand side of (9) is bounded above by
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In addition, since (8) holds by analogy of (10) but with factor (1 — )?

right hand side of (9) can be estimated above by
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And from (9) we get
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From (13) and using Gronwall’s inequality, we get the following a prior
estimation for the solution of (1):
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or in the following more compact form:
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