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Abstract: We investigate the discrete Sturm-Liouville problems
—A(pAu)(n — 1) + g(n)u(n) = lw(n)u(n),

where p is strictly positive, ¢ is nonnegative and w may change sign. If w is
positive, the £?-space weighted by w is a Hilbert space and it is customary to
use that space for setting the problem. In the present situation the right-hand-
side of the equation does not give rise to a positive-definite quadratic form
and we use instead the left-hand-side to definite such a form. We prove in
this paper that this form determines a Hilbert space (such problems are called
left-definite).
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1. Introduction

Let IN be the set of natural number. Define S(N) to be the set of all the
sequences over N which are complex valued. If v € S(IN) then define A :
S(IN) — S(N) to be the first forward difference operator given by

(Au)(n) =u(n+ 1) —u(n).

Using this definition,
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(A(f9)(n) = g(n + 1)(Af)(n) + f(n)(Ag)(n). (1.1)

Also, using the fact Zf:j(Au)(z) =u(k +1) —u(j), we get the summation by
parts formula:

N N
Zg(n +DANR) = (f9N +1) = (f9)() - Zf(n)(Ag)(n)- (1.2)

This equation implies
N

> (pAu)(n)Av(n)

n=1

N
= (pAW (NN + 1) — (pAw) (0)o(D) — 3 ApAu)(n — o(m).  (1.3)
n=1

We associate the term left-definite problem with an inner product associated
with the left hand side of the equation Lu = wf.

The left-definite spectral problem was first raised by Weyl in his seminal
paper [10] and treated by him in [9]. There is now a large body of literature on
the problem of determining spectral properties for such systems. We mention
here for instance Niessen and Schneider [7], Krall [3, 4], Marletta and Zettl [6],
Littlejohn and Wellman [5].

In this paper, we are interested in studying an inner product determined
by the left-hand-side of the difference equation

— (A(pAu))(n — 1) + g(n)u(n) = Aw(n)u(n); n > 2, (1.4)

Some spectral properties were discussed in [1] related to left-hand-side of
the equation

— (A%u)(n — 1) + g(n)u(n) = Mw(n)u(n); n > 2. (1.5)

Unlike the continuous case, the equation (1.4) can not be transformed to (1.5).
Now, for the solutions ¢ and 6 of the equation (1.4), we define the Wron-
skian, W, to be

Ws,0(n) = p(n)(6(n)(A0)(n) — (A¢)(n)6(n)).

Proposition 1.1. W, ¢(n) is constant for all n € N.
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Proof. Using the product rule (1.1)

(AWy0)(n) = ¢(n + 1)(A(pA0))(n) + (A¢)(n)(pAb)(n)
— (0(n + 1)(A(pAG))(n) + (pAP)(n)(A0)(n))
1.

Using the fact that ¢, 6 are solutions for (1.4), then

(AWs6)(n)
=¢(n+1)((¢ — AMw)d)(n+1) —0(n+1)((¢ — Aw)gp)(n+ 1) = 0.
Hence, the Wronskian is constant. ]

Our main interest is studying the equation (1.4) where X is a complex
parameter and where ¢ and w are sequences with ¢ is defined on Ny and assumes
non-negative real values but is not identically equal to zero, w is defined on N
and real-valued, and p is defined on N and assumes strictly positive real values

Consider the operator on the left-hand side of (1.4) by L, i.e.,

(Lu)(n) = =(A(pul))(n — 1) + (qu)(n), neN.
Note that L operates from C N0 to C N,

2. Main Result

Due to the fact that the sign of w is indefinite it is not convenient to phrase the
spectral and scattering theory in the usual setting of a weighted ¢?-space, since
it is not a Hilbert space. Instead the requirement that ¢ is non-negative but not
identically equal to zero allows us to define an inner product associated with
the left hand side of the equation Lu = wf giving rise to the term left-definite
problem. To do so define the set

o0

Hi={ue CN°: Y (p(n)|(Au)(n)]® + q(n)|u(n)|*) < oo}
n=0

and introduce the scalar product

<u,v >= Z n)(Av)(n) + q(n)u(n)o(n)).

The associated norm is denoted by || - [|. We will also use the norm in ¢2(Np)
which we denote by || - 2. We claim #; with this norm is a complete space.
Such a result plays a role in studying the spectral properties of (1.4).

We start with the following sequence of lemmas:
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Lemma 2.1. Ifm > n, then for u € S(N)

m—1

1
u(m)| < fu(n)| + Zp Y 171)1/2' (2.1)

l=n

Proof.
[u(m)] = u(n)| < [u(m) — u(n)],

and

m—1 m—1
u(m) —u(n)| = Y (Au)D)] < D |Au())].
l=n l=n

Now, the inequality of Cauchy-Schwarz gives that

m—1

1
2 18l Z VOISO )

l=n
m—1 m—1

< (3 pOIADD RS — )2,

l=n l=n p(l)
By combining the previous inequalities, we get:

m—1 m—1

[u(m)| = fu(n)] < (Y pOI(A) D))

l=n l=n

1

12,
p(l))

this inequality implies the required result since

m—1

O pAw) P2 < Zp )| Au(l)]?)/2.

l=n

O

Lemma 2.2. Ifr satisfies Y, _;q(n) >0, then for 1 <n <m <r < oo
and u € S(N)

T

!Z Z ))1/2(2 g(n)lu(n)*)'/?

n=1 =

Zp )|Au() ”22

where C = (3__, ﬁ)l/?



A HILBERT SPACE ON LEFT-DEFINITE... 167

Proof. The equation (2.1) gives that
lu(m)] < [u(n)| + Cr ZP 22,

Multiplying by ¢(n) and taking the sum from 1 to r with respect to n give

r

|Z <3 gm)lu(m)] +C; Zp ) (i) 1/22 (2.2)

n=1

Now, the inequality of Cauchy—Schwarz gives

T T T

Y alu(m)] < (3 a)2 (Y a(m)u(m)*)2.

n=1 n=1 n=1

Then (2.2) becomes

n= n=1
+C- (Y I AuDP) Y a(n)
=1 n=1

We are ready to prove the following lemma:

Lemma 2.3. For any N € N, there exists C'y such that

lu(m)| < Cxllull,

for any m such that 1 < m < N and any u € H;.

Proof. For any N € N there exists » > N such that >/, ¢g(n) > 0. Now,
Lemma 2.2 implies

!Z ) < Hullm(z n)'? 4+ C, Z

n=1
or
lu(m)| < Cnllully,,

where
T

Cx = Cr + (X qln)) ™72

n=1
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The following lemma gives some properties for the Cauchy sequences in H;.

Lemma 2.4. Let n+ uy(-) be a Cauchy sequence in H,, then
1. There exists v(-) such that (\/pAuy,)(-) — v(-) in [*(N) as n — oo.

2. Vq()un (1) — /q(-)u(:) in I>(N), where u(k) = lim,, o, u, (k) in C for
all k € N.

Proof. 1. If n — w,(+) is a Cauchy sequence in H;y, then for € > 0, there
exists ng such that for all m,n > ng

[um () = un()ll, <e (2.3)

consequently,

1(VPAUR) () = (VPAUR)()ll2) <&,

this means by the completeness of I2(IN) that there exists v(-) such that,
as n — 0o,

(vVPAU,)(-) — () in I*(N). (2.4)
Therefore,

(v/PAuy)(k) — v(k) in C. (2.5)
2. Lemma 2.3 gives K. such that if £ <r

[um (k) — un (k)| < Krllum(-) = un()l#, < Kore,

this means that n — u, (k) is a Cauchy sequence in C. The completeness
of the complex numbers C gives the existence of u € S(N) such that, as
n — 00,

un(k) — u(k) in C (2.6)

Vq(k)un(k) — /q(k)u(k) inC. (2.7)

Moreover, equation (2.3) gives

1V a()um(-) — v/ a(-)un(: HlQ(N
Again by the completeness of l2(N) then there exists v(-) such that as

n — 00, \/q(Jun(-) — v(-) in [3(N) this means 33>, |/q(k)un(k) —

v(k)|> — 0. Hence, for any k,

and hence

q(k)un (k) — v(k) in C,
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which implies by (2.7) v(k) = v/q(k)u(k).

Proposition 2.5. The space H; is complete.

Proof. First, assume n — u,(-) is a Cauchy sequence. Then using Lemma 2.4
there exist u € S(N) such that u,, converges to u pointwise and v(- ) 6 I2(N)
such that (Au,)(-) — wv(-). This proves that u(k) = u(l) + Z] Lo(j) €
Hi. Also, this lemma implies (\/pAuy,)(-) — (v/PAw)(:) and (\/qun)(-) —
(Vau)(:) in B(N),

Moreover, one can prove that u,(-) — wu(-) in H; as follows. Since

[un () = w()ll, = Zp |(Aun ) (k) — |2+Z k) lun (k) — u(k)[?,

then

[un () = u()llw, = Z! k) (Auy)(k) = v(k))[?
+ Z [(v/a (k) (un (k) — u(k)))?|.
k=1

Using Lemma2.4 and the last equation, we get ||u,(-) — u(-)||%, — 0, which
means Uy, () — u(-) in H;, and hence the Cauchy sequence in ; is convergent,
this means H; is complete. O
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