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1. Introduction

In this paper we give explicit formulas for the Schwartz integral kernels of
the heat, resolvent and wave operators et∆ν,µ ,

(

∆ν,µ + λ2
)−1

and cos t
√

−∆ν,µ

attached to the Schrödinger operator with bi-inverse square potential on the
Euclidian plane IR2:

∆ν,µ =
∂2

∂x2
+

∂2

∂y2
+

1/4 − ν2

x2
+

1/4− µ2

y2
, (1.1)

where ν, µ are real parameters.
The inverse square potential is an interesting potential which arises in sev-

eral contexts, one of them being the Schrödinger equation in non relativistic
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quantum mechanics. For example the Hamiltonian for a spin zero particle in
Coulomb field gives rise to a Schrödinger operator involving the inverse square
potential see Case [4]. Note that the Schrödinger operator with bi-inverse square
potential (1.1) is considered in Boyer [1], in the case of the time dependent
Schrödinger equation.

First of all we recall the following formulas for the modified Bessel function

of the first kind Iν and the Hankel function of the first kind H
(1)
ν :

Iν(z) =
(2z)νez√

πΓ(ν + 1/2)

∫ 1

0
e−2zt [t(1− t)]ν−1/2 dt (1.2)

(see Temme [11], p. 237);

Iν(x) ∼
(x/2)ν

Γ(ν + 1)
x −→ 0 ν 6= −1,−2, .... (1.3)

(see Temme [11], p. 234);

Iν(x) ∼ ex(2πx)−1/2 x −→ ∞ (1.4)

(see Temme [11] p. 240);

H(1)
ν (z) =

2

i
√
πΓ(1/2 − ν)

(z/2)−ν

∫ ∞

1
eizt

(

t2 − 1
)−ν−1/2

dt (1.5)

(see Erdélyi et al. [7], p. 83);

H(1)
ν (z

√
α2) =

−i

π
e−iνπ/2(α2)ν/2

∫ ∞

0
e
i z
2

(

t+α
2

t

)

t−ν−1dt (1.6)

I z > 0 and I α2z > 0 (see Magnus et al [9], p. 84). Recall also the two vari-
ables double series, called F2 Appell hypergeometric function (see Erdélyi et al
[6], p. 224):

F2(α, β, β
′, γ, γ′, z, z′) =

∞
∑

m=0

∞
∑

n=0

(α)m+n(β)m(β′)n
(γ)m(γ′)nm!n!

zmz′n

(|z|+ |z′| < 1), (1.7)

and its integral representation (see Erdélyi et al [6], p.230) for Rβ > 0, Rβ′ >
0, R (γ − β) > 0 and R (γ′ − β′) > 0:

F2

(

α, β, β′, γ, γ′, z, z′
)

= c

∫ 1

0

∫ 1

0
(1− u)γ−β−1
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× (1− v)γ
′−β′−1uβ−1vβ

′−1
(

1− uz − vz′
)−α

dudv, (1.8)

where

c =
Γ(γ)Γ(γ′)

Γ(β)Γ(β′)Γ(γ − β)Γ(γ′ − β′)
. (1.9)

We recall the following formulas for the heat kernel associated to the Schr̈odinger

operator with inverse square potential Lν = ∂2

∂x2 + 1/4−ν2

x2 (see Calin et al. [3],
p. 68):

etLν =
(rρ)1/2

2t
e

−(r2+ρ
2)

4t Iν(
rρ

2t
), (1.10)

where Iν is the modified Bessel function of the first kind.

Proposition 1.1. The Schwartz integral kernel of the heat operator with

bi-inverse square potential et∆ν,µ can be written for p = (x, y), p′ = (x′, y′) ∈
IR2

+ and t ∈ IR+ as

Hν,µ(t, p, p
′) =

(xx′yy′)1/2

4πt2
e−(|p|2+|p′|2)/4tIν((xx

′)/2t)Iµ((yy
′)/2t) (1.11)

where Iν is the modified Bessel function of the first kind.

Proof. The formula (1.11) is a direct consequence of the formula (1.10)
and the properties of the operator (1.1).

2. Resolvent Kernel with Bi-Inverse Square Potential

on the Euclidian Plane

Theorem 2.1. The Schwartz integral kernel for the resolvent operator
(

∆ν,µ + λ2
)−1

is given by the formula

Gν,µ(λ, p, p
′) =

i−(ν+µ)e
(ν+µ+1)

2
iπ

4π

(xx′)ν+1/2(yy′)µ+1/2

Γ(ν + 1/2)Γ(µ + 1/2)

×
∫ 1

0

∫ 1

0

(

√

|p− p′|2 + 4xx′u+ 4yy′v

2λ

)−(ν+µ+1)

×H
(1)
ν+µ+1(λ

√

|p− p′|2 + 4xx′u+ 4yy′v)

×[u(1− u)]ν−1/2[v(1− v)]µ−1/2dudv, (2.1)
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where H
(1)
ν is the Hankel function of the first kind.

Proof. We use the well known formula connecting the resolvent and the
heat kernels:

Gν,µ(λ, p, p
′) =

∫ ∞

0
eλ

2tHν,µ(t, p; p
′)dt, Rλ2 < 0, (2.2)

we combine the formulas (2.2) and (1.11) then use the formulas (1.3), (1.4) to
apply the Fubini Theorem and in view of the formula (1.6), we get the formula
(2.1) and the proof of Theorem 2.1 is finished.

Theorem 2.2. The Schwartz integral kernel of the resolvent operator
(

∆ν,µ + λ2
)−1

can be written as

Gν,µ(λ, p, p
′) = c2(2xx

′)ν+1/2(2yy′)µ+1/2

∫ ∞

|p−p′|
eiλs

(

s2 − |p− p′|2
)−3/2−ν−µ

×F2

(

a, b1, b2, 2b1, 2b2,
4xx′

s2 − |p− p′|2 ,
−4yy′

s2 − |p− p′|2
)

ds, (2.3)

with a = 3/2 + ν + µ, b1 = 1/2 + ν and b2 = 1/2 + µ,

c2 = (−1)ν+µ+1 Γ(1/2 + ν)Γ(1/2 + µ)

4π3/2Γ(2ν + 1)Γ(2µ + 1)Γ(−1/2 − ν − µ)
, (2.4)

where F2 is the two variables Appell hypergeometric function (1.7).

Proof. We use the formula (2.1) and (1.5) as well as the Fubini theorem to
arrive at the announced formula (2.3).

3. Wave Kernel with Bi-Inverse Square Potential

on the Euclidian Plane

In physics, the nature tells us that energy and information can only be transmit-
ted with finite speed, smaller or equal to the speed of light. The mathematical
framework, which allows an analysis and proof of this phenomenon, is the the-
ory of hyperbolic differential equations and in particular of the wave equation.
The result, which may be obtained, runs under the name finite propagation
speed (see Cheeger et al [5]). The following result illustrates this principle for
the case of the the Schrödinger operator with bi-inverse square potential.
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Theorem 3.1. (Finite propagation speed) Let wa(t, x, x
′) be the Schwartz

integral kernel of the wave operator
sin t

√
−∆ν,µ√

−∆ν,µ

, then we have

wa(t, x, x
′) = 0, whenever |x− x′| > t. (3.1)

Proof. The proof of this result use an argument of analytic continuation
from the identity

sin t
√

−∆ν,µ
√

−∆ν,µ

=
1

2i

(

eit
√

−∆ν,µ

√

−∆ν,µ

− e−it
√

−∆ν,µ

√

−∆ν,µ

)

. (3.2)

We recall the formula [12], p.50,

e−tλ

t
=

1√
π

∫ ∞

0
e−ut2u−1/2e−λ2/4udu. (3.3)

By setting t =
√

−∆ν,µ and λ = s in (3.3) we can write

e−s
√

−∆ν,µ =
1√
π

∫ ∞

0
e−s2/4uu−1/2eu∆ν,µdu, (3.4)

and let P (x, x′, s) be the integral kernel of e−s
√

−∆ν,µ then we can write

P (x, x′, s) =
1√
π

∫ ∞

0
e−s2/4zz−1/2Hν,µ(z, x, x

′)dz, (3.5)

where Hν,µ(t, x, x
′) is the heat kernel with the bi-inverse square potential given

by (1.11).
Consider the integral

J(τ) = P (x, x′, τ) =
1√
π

∫ ∞

0
|e−τ2/4zz−1/2Hν,µ(z, x, x

′)|dz, (3.6)

using (1.11) we have

J(τ) =
(xx′yy′)1/2

4π3/2

∫ ∞

0
|e−τ2/4zz−5/2e−(|p|2+|p′|2)/4zIν((xx

′)/2z)Iµ((yy
′)/2z)|dz.

(3.7)
From (3.2) we have

wa(t, x, x
′) =

1

2i

(

P (it, x, x′)− P (−it, x, x′)
)

=
1

2i
(J(it)− J(−it)) . (3.8)
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Now set
J(τ) = J1(τ) + J2(τ), (3.9)

where

J1(τ) =
(xx′yy′)1/2

4π3/2

∫ 1

0
|e−τ2/4zz−5/2e−(|p|2+|p′|2)/4z

× Iν((xx
′)/2z)Iµ((yy

′)/2z)|dz, (3.10)

J2(τ) =
(xx′yy′)1/2

4π3/2

∫ ∞

1
|e−τ2/4zz−5/2e−(|p|2+|p′|2)/4z

× Iν((xx
′)/2z)Iµ((yy

′)/2z)|dz. (3.11)

Using the formula (1.3) we see that the last integral J2(τ) converge absolutely
and is analytic in τ for ν + µ+ 3/2 > 0.

For the first integral J1(τ) we obtain

J1(τ) =
(xx′yy′)1/2

4π3/2

∫ ∞

1
e−τ2z/4z1/2e−(|p|2+|p′|2)z/4

× Iν((xx
′)z/2)Iµ((yy

′)z/2)|dz, (3.12)

and from the formula (1.4) we see that

J1(τ) ∼
1

4π5/2

∫ ∞

1
z−1/2e−(τ

2+|p−p′|2) z

4 dz (3.13)

is analytic in τ and converges if Re
[

τ2 + |p− p′|2
]

> 0, hence the integral
J(±it) is absolutely convergent if (±it)2 + |p − p′|2 > 0 (ie) |p− p′| > t and in
view of (3.8) we have wν,µ(t, x, x

′) = 0 for |p−p′| > t and the proof of Theorem
3.1 is finished.

Theorem 3.2. The Schwartz integral kernel for the wave operator

cos t
√

−∆ν,µ with bi-inverse square potential on the Euclidian plane can be

written on the two following forms

wν,µ(t, p, p
′) =

(xx′yy′)1/2

i
√

(2π)3t4

∫ 0+

−∞
exp

[

− u

2t2
(

|p|2 + |p′|2 − t2
)

]

×Iν

(

xx′

t2
u

)

Iµ

(

yy′

t2
u

)

u3/2du, (3.14)
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and

wν,µ(t, p, p
′) = 2

(xx′yy′)1/2
√

(2π)3t4

∫ ∞

0
exp

[ r

2t2
(

|p|2 + |p′|2 − t2
)

]

×Iν

(−xx′

t2
r

)

Iµ

(

−yy′

t2
r

)

r3/2dr, (3.15)

where Iν is the first kind modified Bessel function of order ν.

Proof. We start by recalling the formula (see Magnus et al. [9], p.73),

cos z =
√

πz/2 J−1/2(z), (3.16)

where Jν(.) is the Bessel function of first kind and of order ν defined by (see
Magnus et al [9], p.83),

Jν(αz) =
zν

2iπ

∫ 0+

−∞
e(α/2)(t−z2/t)t−ν−1dt, (3.17)

provided that Rα > 0 and |argz| ≤ π. Here we should note that the integral
in (3.17) can be extended over a contour starting at ∞, going clockwise around
0, and returning back to ∞ without cutting the real negative semi-axis.

For ν = −1/2 the eq. (3.17) can be combined with eq. (3.16) to derive the
following formula:

cos(αz) =
1

2i
√
2π

∫ 0+

−∞
e(α/2)(u−z2/u)u−1/2du. (3.18)

Putting α = 1 and replacing the variable z by the symbol t
√

−∆ν,µ in (3.18),
we obtain

cos t
√

−∆ν,µ =
1

2i
√
2π

∫ 0+

−∞
e(u/2+(t2/2u)∆ν,µ)u−1/2du. (3.19)

Finally making use of (1.11) in (3.19), we get, after an appropriate change of
variable, the formula (3.14).

To see the formula (3.15), set

J =

∫ 0+

−∞
exp

[

− u

2t2
(

|p|2 + |p′|2 − t2
)

]

Iν

(

xx′

t2
u

)

Iµ

(

yy′

t2
u

)

u3/2du (3.20)

and

I =

∫ ∞

0
exp

[ u

2t2
(

|p|2 + |p′|2 − t2
)

]

Iν

(

−xx′

t2
u

)

Iµ

(

−yy′

t2
u

)

u3/2du, (3.21)
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we have
J = J1 + J2 + J3, (3.22)

J1 =

∫

γ1

exp
[

− u

2t2
(

|p|2 + |p′|2 − t2
)

]

Iν

(

xx′

t2
u

)

Iµ

(

yy′

t2
u

)

u3/2du, (3.23)

J2 =

∫

γ2

exp
[

− u

2t2
(

|p|2 + |p′|2 − t2
)

]

Iν

(

xx′

t2
u

)

Iµ

(

yy′

t2
u

)

u3/2du, (3.24)

and

J3 =

∫

γ3

exp
[

− u

2t2
(

|p|2 + |p′|2 − t2
)

]

Iν

(

xx′

t2
u

)

Iµ

(

yy′

t2
u

)

u3/2du, (3.25)

where the paths γ1, γ2 and γ3 are given by

γ1 : z = reiπ; ǫ ≤ r < ∞(above the cut),

γ2 : z = re−iπ;∞ > r ≥ ǫ(below the cut),

γ3 : z = ǫeiθ;−π < θ < π(rund the small circle),

and as ǫ −→ 0, we have J1 −→ e5iπ/2I, J2 −→ −e−5iπ/2I and J3 −→ 0.
Summing the integrals, we establish the required result J = 2i sin(5π/2) I.

Theorem 3.3. The integral kernel for the wave operator cos t
√

−∆ν,µ with

bi-inverse square potential on the Euclidian plane can be written as

wν,µ(t, p, p
′) = C2(−4xx′)ν+1/2(−4yy′)µ+1/2

(

t2 − |p − p′|2
)−5/2−ν−µ

+

×F2

(

α, β, β′, 2β, 2β′,
4xx′

t2 − |p− p′|2 ,
4yy′

t2 − |p− p′|2
)

, (3.26)

where F2(α, β, β
′, γ, γ′; z, z′) is the two variables Appell hypergeometric function

F2 given in (1.7), α = 5/2+ ν+µ, β = ν+1/2 , β′ = µ+1/2 and the constant

C2 is given by

C2 = (−1)ν+µ

(

2

π

)5/2 Γ(1/2 + ν)Γ(1/2 + µ)

Γ(2ν + 1)Γ(2µ + 1)
. (3.27)

Proof. We use essentially the formula (3.15) of Theorem 3.2, the formulas
(1.2), the Fubini theorem and the formula (1.8).
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4. Applications and Further Studies

We give an application of Theorem 3.3.

Corollary 4.1. The integral kernel of the heat operator et∆ν,µ can be

written in the form

Hν,µ(t, p, p
′) =

1√
πt

C2(−4xx′)ν+1/2(−4yy′)µ+1/2

×
∫ ∞

|p−p′|
e−u2/4tu

(

u2 − |p− p′|2
)−5/2−ν−µ

×F2

(

a, b, b′, 2b, 2b′,
4xx′

u2 − |p − p′|2 ,
4yy′

t2 − |p− p′|2
)

du,

with a = 5/2 + ν + µ ,b = ν + 1/2, b′ = µ+ 1/2.

Proof. We use the transmutation formula (see Greiner et al [8], p.362),

et∆ν,µ =
1√
πt

∫ ∞

0
e−u2/4t cos u

√

−∆ν,µdu.

We suggest here a certain number of open related problems connected to this
paper. We are interested in the semi-linear wave and heat equations associated
to the bi-inverse square potential and global solution and a possible blow up in
finite times.

We can also to look for the dispersive and Strichartz estimates for the
Schrödinger and the wave equations with bi-inverse square potential, for the
case of inverse square potential (see Burg et al [2], Planchon et al. [2]).

References

[1] C.P. Boyer, Lie theory and separation of variables for the equation iUt +
( α
x2
1
+ β

x2
2
)U = 0, SIAM J. Math. Anal., 7 , No. 2 (1976), 230-263.

[2] N. Burg, F. Planchon, J. Stalker and A. Shadi Tahvildar-Zadeh, Strichartz
estimate for the wave equation with the inverse square potential,
arXiv:math., AP/0207152.v3 (27 Aug 2002).

[3] O. Calin, D. Chang, K. Furutani and C. Iwasaki, Heat Kernels for Elliptic

and Sub-elliptic Operators Methods and Techniques, Springer, New York-
Dordrecht-Heidelberg-London (2011).



136 M.V.O. Moustapha

[4] K.M. Case, Singular potential, Phys. Rev., 80 (1950), 797-806.

[5] J. Cheeger and M. Taylor, On the diffraction of waves by canonical singu-
larites, I, Comm. Pure Appl. Math., 35, No. 3 (1982), 275-331.
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