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Abstract: Consider a general mean-reverting discrete-time model of financial
markets in which the stock prices process is a time discretization of a stochastic
differential equation. We introduce a new type of asymptotic arbitrage by
proving existence of self-financing strategies that generate linear growing profits
on investors’ wealth with probability converging to 1 geometrically fast. We
estimate the rate of this convergence using ergodic results on Markov chains
and large deviations theory.

Next, we discuss asymptotic linear arbitrage in the expected utility sense
and its link with the first type of asymptotic arbitrage.
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1. Introduction

In Mathematical Finance, most models in discrete and continuous-time share
the following feature: for any finite time horizon T < ∞, there is a possibility
to exclude arbitrage opportunity from the market model, see for instance [3].
But, in long-term trading i.e., when T → ∞, one may always generate riskless
profit, which is known in the literature as asymptotic arbitrage, see for e.g. the
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pioneering works of Kabanov and Kramkov in [7].

This concept of asymptotic arbitrage has been studied since then in slightly
different forms by some authors. For examples, after they discussed they subject
in a typical case of Urnstein-Uhlenbeck process, Föllmer and Schachermayer in
[5] conjectured in a general continuous-time diffusion model the possibility of
generating exponential growth profit on investor’s wealth in long-term; what
in a corresponding discrete-time setting, we proved in a joint work in [9] and
called it “asymptotic exponential arbitrage”. Moreover, we introduced in [9]
a more meaningful version of asymptotic exponential arbitrage by considering
a general discrete-time stock prices model, expressed in an exponential form
and by showing existence of exponential growth profit on investors’ wealth in
long-term with the possibility of controlling at a geometrically decaying rate
the probability of failing to achieve such a profit.

In this paper, under the modeling settings below, we introduce the new con-
cepts of “asymptotic linear arbitrage with geometrically decaying probability of
failure” and “utility-based asymptotic linear arbitrage”. The former is similar
to the one we just mentioned above, which we do not recall here as it is indeed
similarly defined but treated under different settings.

Consider a discrete-time financial market with two assets in trading: a
riskless asset (a bank account or a risk-free bond) with fixed interest rate, set
to 0 for simplicity, i.e., with prices normalized to Bt := 1 for all time t ∈ N,
and a single risky asset (such as stock) whose (discounted) prices St, t ∈ N, is
an R-valued process governed by the stochastic difference equation

St+1 = St + µ(St) + σ(St)εt+1, t ∈ N. (1)

S0 is assumed constant, µ : R → R and σ : R → R, with σ > 0, are measurable
functions determining the drift and volatility of the stock, (εt)t∈N is an R-valued
sequence of i.i.d random variables representing the random driving process of
the stock prices evolution. We assume that the stock prices process is modeled
and integrable in a filtered probability space (Ω,F ,F,P), where F := (Ft)t∈N
with Ft := σ(S0, S1, ..., St), t ∈ N, is the natural filtration of the stock prices
process. E will always denote the expectation with respect to the probability
measure P.

Note that (1) can be thought as the time-discretization of a general diffusion
process. In particular, if µ(x) := −αx with 0 < α < 1, and σ(x) := 1 for all
x ∈ R, then we get the discrete-time Ornstein-Uhlenbeck process.

Clearly, the stock prices process St in (1) is a (discrete-time) Markov chain
in the (uncountable) state space R (see pp. 211–228 in [1]). Unlike in our joint
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work [9] and other similar works such as [3], [5], we do not consider it expressed
in any exponential form.

Next, in this market model, trading strategies we consider are R-valued
(Ft)t-predictable processes (πt)t∈N on the probability space (Ω,F ,P): πt rep-
resents the number of units of the stock an economic agent holds at each time
t and it is Ft−1-measurable by predictability. Since since πt is R-valued, then
it can be negative; meaning that we allow short-selling of the stock, a more
realistic consideration we prohibited from the models in [9].

Given any such trading opportunity πt, we model the corresponding (dis-
counted) wealth an investor allocates in the stock by an R-valued discrete-time
stochastic process V π

t obeying the (self-financing) dynamics

{

V π
t+1 = V π

t + πt+1(St+1 − St) for all time t ≥ 1,
V π
0 := V0 ≥ 0, is the investor’s initial capital.

(2)

With these modeling settings, we organize the whole paper as follows. In
Section 2 below, we define properly the concept of asymptotic linear arbitrage
strategies (with geometrically decaying probability of failure). We state in The-
orem 2.4 and prove later the main result on existence of such trading strategies
in the models (1) and (2) under suitable conditions. And we check that these
conditions hold in two practical examples of discrete-time financial models.

Next, in the third and last section of the paper, we also define the concept
of “utility-based asymptotic linear arbitrage”, i.e., asymptotic linear arbitrage
linked to the concept of expected utilities (see for e.g. [4, Chap. 5]). Classically,
an optimal investment for an economic agent with utility function U is the
available portfolio πt with (random) wealth outcome V π

t for which the expected
utility EU(V π

t ) is maximal. In that section, we do not focus on the construction
of optimal strategies (which is well discussed in the literature, see for e.g. [5]),
but rather on treating the following basic question: Among risk-averse and
risk-seeking investors, what type of investor (with a suitable utility function)
for which if he/her wealth V π

t grows linearly fast in the sense of Definition 2.2
above, then his/her expected utility will also increase (at least) linearly fast?
In Theorem 3.2 we provide an answer to this question for risk-seeking investors
with a suitable class of utility functions.

2. The Concept of Asymptotic Linear Arbitrage

Definition 2.1. Let πt be any (self-financing) predictable strategy in the
models (1) and (2). We say that πt is an asymptotic linear arbitrage (ALA)
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in the wealth model (2), if from zero initial capital V0, there is a real constant
a > 0 such that, for all ǫ > 0, there is a time tǫ ∈ N satisfying

P(V π
t ≥ at) ≥ 1− ǫ, for all time t ≥ tǫ. (3)

The financial interpretation of this is straightforward: given a “tolerance
level” ǫ > 0, there is a treshold time tǫ from which an investor starts to gener-
ate profit in long-term at a linear growth rate, with probability tending to 1.
However, one may need to wait for a long time tǫ before starting to realize any
such profit in long-term. Therefore we formulate a strengthened version of (3)
by connecting the tolerance level ǫ with the running time t.

Definition 2.2. We say that the trading opportunity πt generates a
(strong) asymptotic linear arbitrage (ALA) with geometrically decaying proba-
bility of failure (GDP -F ) if from zero initial capital V0, there are real constants
a > 0, and c > 0 such that,

P(V π
t ≥ at) ≥ 1− e−ct for all large enough time t ≥ 1, (4)

or equivalently,

P(V π
t < at) < e−ct, for all large enough time t ≥ 1. (5)

The additional financial feature of this definition is that, by (4) the investor’s
wealth grows linearly fast in long term independently from any treshold time,
and by (5) an economic agent can control at a geometrically decaying rate the
probability of failing to achieve such a linear growth profit in long-term.

In order to investigate trading strategies πt that generate ALA with GDP -F
in the market models (1) and (2):

First, due to the Markovian structure of the stock prices process St, we
restrict ourselves to bounded “Markovian strategies” i.e., trading opportunities
of the form πt := π(St−1), for all t ∈ N, where π : R → R is a bounded
measurable function with respect to the Borel σ-algebra B(R).

Next, we assume that the stock prices process St in (1) satisfies the so-called
“mean-reverting” condition:

(MRC) : lim sup
|x|→∞

|x+ µ(x)|
|x| < 1. (6)

This is obviously verified for e.g., by the (discrete-time) Ornstein-Uhlenbeck
process. It means the stock prices have at most a linear growth and they tend
to move about the average price in time.
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And we suppose that the following set of conditions holds in the same models
(1) and (2):

(A1) The random variables εt’s have a common (a.s.) strictly positive den-
sity γ with respect to the Lebesgue measure λ on R, and this density is (a.s.)
bounded on each compact in R.

(A2) The drift µ is locally bounded. The volatility σ is positive, bounded
away from zero on each compact and is (globally) bounded.

(A3) And we assume the following integrability property for the law of the
εt’s:

∃κ > 0 such that E
(

eκε
2)

=: I <∞, (7)

where ε has the distribution as the εt’s, t ∈ N. We also assume that Eε = 0
holds1.

Under these conditions, to proceed to the statement of the existence theo-
rem, we express first the prices process St of the stock from (1) in the form

St+1 − St = µ(St) + σ(St)εt+1 = σ(St)
(

ϕ(St) + εt+1

)

,

where the function ϕ is defined by ϕ(x) := µ(x)/σ(x), for all x ∈ R.

Definition 2.3. We call ϕ the “market price of risk” function for the stock
prices St.

The quantity ϕ(St) bears a straightforward interpretation: since µ(St) rep-
resents the average one-step return of of the stock while σ(St) measures the
one-step volatility of this price as driven by the random “noise” εt, ϕ(St) rep-
resents the one-step return of stock per unit volatility.

We may also require the condition below, called “risk-condition”, for the
market price of risk function ϕ:

(RC): the set R0 := {x ∈ R | ϕ(x) 6= 0} satisfies λ(R0) > 0. (8)

We interpret the set R0 as representing all states of the stock prices St
whose market price of risk is not 0. We say that (RC) holds if λ(R0) > 0.

Set R+
0 := {x ∈ R | ϕ(x) > 0} and R−

0 := {x ∈ R | ϕ(x) < 0}. If 1A denotes
the indicator function on A for any A ⊆ R, consider the bounded Markovian
strategy

π0t := π0(St−1) where π
0(x) := 1R+

0

(x)− 1R−

0

(x) for all x ∈ R, (9)

1This is not a restriction of generality. If one had Eε = m one could replace µ(x) by
µ
′(x) := µ(x)+ σ(x)m and εi by ε

′

i := εi −m and in this way we get back to the case Eε = 0.
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which is interpreted as being constructable by a potential long-term arbitrageur
as follows: s/he invests all his money in the stock whenever its market price
of risk is positive, s/he sells the stock short when the market price of risk is
negative, otherwise he puts everything into his bank account. Then we state
the first main result of this paper.

Theorem 2.4. Suppose that the market price of risk function ϕ satisfies
the risk-condition (RC) in (8). Then the bounded Markovian strategy π0t =
1R+

0

(St−1)− 1R−

0

(St−1) generates an ALA with GDP -F in the models (1) and

(2).

We present the proof at the end of this section after an appropriate prepa-
ration.

First, inspecting the dynamics of the investor’s wealth process in (2) for
any bounded Markovian strategy πt = π(St−1), we express it in the functional
form

V π
t = V0 +

t
∑

n=1

f(Φn), for all time t ≥ 1, (10)

of the auxiliary process Φn := (Sn−1, Sn) of two consecutive values of the stock
prices process, where f is the measurable function defined on R

2 by f(x, y) :=
π(x)(y − x). Assume that S−1 is an (arbitrary) given initial constant so that
the process Φt = (St−1, St) starts at time 0 as well.

We show below a first set of preliminary results derived from the advanced
theory of Markov chains presented in [10] and from the ergodic theory of func-
tionals of Markov chains in [8].

Proposition 2.5. The stochastic process Φt is a Markov chain with state
space R

2.

Proof. We derive this from [1] pp. 211-228, where the Markov property of
any (discrete-time) Markov chain Yt in a Polish state space S is characterized by
its evolution in the form Yt+1 = f(Yt, ξt+1), with (ξt)t a sequence of i.i.d random
variables independent of Y0 and valued in some measurable space S ′, and f :
S×S ′ → S a suitable measurable function. Indeed, using (1), the Markov chain
St is in the form St+1 = f(St, εt+1) for all time t ∈ N, with the measurable
function f defined by f(x, y) := x+µ(x)+ σ(x)y for all x, y ∈ R. It follows for
all time t ∈ N, that we have Φt+1 = (St, St+1) = (St; f(St, εt+1)) = F (Φt, ξt+1),
where ξt := (0, εt) and F is the measurable function defined on R

2 × R
2 by
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F ((x, y); (a, b)) := (y; f(y, b)). Since the εt’s are i.i.d and independent from S0,
the ξt’s are also i.i.d and independent from Φ0, showing that the next state
Φt+1 is generated from the previous state Φt, plus an independent noise ξt+1,
as required.

Let λ2 denote the Lebesgue measure on R
2 and B(R2) the Borel σ-algebra

on R
2. For x ∈ R and A ∈ B(R), let us denote P (x,A) := P(St+1 ∈ A|St = x),

t ≥ 0, the one-step transition probability kernel of the chain St, and P
t(x,A) :=

P(St ∈ A|S0 = x) its t-step transition probability kernel. Also for z ∈ R
2 and

C ∈ B(R2), let Q(z, C) and Qt(z, C) denote the corresponding kernels for the
chain Φt. Then we have the following

Proposition 2.6. The Markov chain St is ψ-irreducible and aperiodic.

Proof. By the definition of ψ-irreducibility and Propositions 4.2.1 and 4.2.2
on pp. 89-90 in [10], it is enough to show it is λ-irreducible, that is; if x ∈ R

and A ∈ B(R) such that λ(A) > 0, then, there is an integer t ≥ 1 such that
P t(x,A) > 0. This clearly follows for t = 1 by Assumption (A1) and by the
translation invariance property of the Lebesgue measure λ applied in the last
of the equalities below:

P (x,A) := P
(

St+1 ∈ A | St = x
)

= P
(

x+ µ(x) + σ(x)εt+1 ∈ A
)

=
∫

(A−x−µ(x))/σ(x) γ(y)λ(dy) > 0.
(11)

Next, to prove the aperiodicity of St, by Definition 5.14 on p.109 in [10]
and by Theorem 5.4.4 on p.121 of the same reference, it is enough to show that
there exists a subset C in R with λ(C) > 0, n > 0 and a non-trivial measure
νn on B(R) such that

Pn(x,A) ≥ νn(A) for all x ∈ C, A ∈ B(R), (12)

and the g.c.d (greatest common divisor) of the set EC is 1, where

EC := {n ≥ 1 : C satisfies (12)}.

Indeed, fix any compact subset C in R with λ(C) > 0 and let n := 1. Using
Assumptions (A1) and (A2), it follows from (11) that P 1(x,A) = P (x,A) ≥
cλ1C(A) for some constant c > 0 and for all x ∈ C, A ∈ B(R). Indeed,
c := (sup{σ(u) : u ∈ C})−1 inf

{

γ
(

a−u−µ(u)
σ(u)

)

: a ∈ C, u ∈ C
}

. So, taking ν1 :=

cλ1C , where ν1(dy) := cλ(dy ∩ C), we get 1 ∈ EC , hence g.c.d(EC ) = 1.
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Proposition 2.7. The Markov chain Φt is also ψ-irreducible and aperi-
odic.

Proof. Similarly to the preceding proof, we show first that Φt is irreducible.
Using condition (A1), for all y ∈ R the random variable y + µ(y) + σ(y)ε1 has
a λ-a.e. positive density, p1(u), u ∈ R. By the same argument, for all u ∈ R

the random variable y + µ(y + µ(y) + σ(y)u) + σ(y + µ(y) + σ(y)u)ε2 has a
λ-a.e. positive density p2(u,w), w ∈ R which can be chosen jointly measurable
in (u,w). Hence, by independence of ε1, ε2, when Φ0 = (x, y), the density of

Φ2 = (y + µ(y) + σ(y)ε1, y + µ(y + µ(y) + σ(y)ε1) + σ(y + µ(y) + σ(y)ε1)ε2)

with respect to λ2 equals p1(u)p2(u,w), and this is λ2-a.e. positive. In partic-
ular, for all A,B ∈ B(R) with λ2(A×B) > 0, setting (x, y) = z, we have

Q2(z,A×B) = P(Φ2 ∈ A×B|Φ0 = z) =

∫

A×B
p1(u)p2(u,w)λ2(du, dw), (13)

which is strictly positive, showing λ2-irreducibility and hence ψ-irreducibility
of the Markov chain Φt.

Next for aperiodicity, take any compact rectangle C := C1 × C2 such that
λ2(C) > 0 with C1 and C2 intervals in R, there exist constants c1, c2 > 0
such that, with the measure ν2 := c1c2λ21C defined on B(R2) by ν2(dy1, dy2) =
c1c2λ2(dy1∩C1, dy2∩C2), we have Q

2((x, y);A×B) ≥ ν2(A×B) for all x ∈ C1,
y ∈ C2 and all A,B ∈ B(R), which proves that 2 ∈ EC (where EC is defined
using the kernel Q instead of P in (12)). Moreover, by an additional similar
argument, one gets also 3 ∈ EC , showing that g.c.d(EC ) = 1, as required.

Lemma 2.8. The random variable ε in (7) of Assumption (A3) satisfies
the following property: for every real number a ≥ 1, we have,

E
(

ea|ε|
)

≤ eca
2

for some fixed constant c > 0. (14)

Proof. Set ξ := |ε|. Then we have

P
(

eaξ > x
)

= P

(

exp
(

κ
[

log(eaξ)
a

]2)

> exp
(

κ
[

log x
a

]2))

≤ I exp
(

− κ
(

log(x)/a
)2
)

by Markov Inequality

= I( 1x)
(κ/a2) log x,

see (7) for the definition of I. Since the exponent (κ/a2) log x > 2 provided that
x > e2a

2/κ, we have E
(

eaξ
)

=
∫∞
0 P

(

eaξ > x
)

dx ≤ e2a
2/κ + I

∫∞
exp(2a2/κ) 1/x

2dx.
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The last integral is less than
∫∞
1 1/x2dx, which is finite, thus we conclude the

proof by taking for example c = c1 + (2/κ) with c1 > 0 large enough.

Applying this lemma, we check below the following

Proposition 2.9. The Markov chain St satisfies the “drift condition”
(DV 3+) (i) on p. 6 of [8], which is recalled in the proof below.

Proof. (DV 3+) (i) means: the chain St is ψ-irreducible, aperiodic and there
are (measurable) functions V,W : R → [1,∞), a subset C in R verifying (12)
above for some n, and constants δ > 0, b < ∞ such that log

(

e−V P eV
)

(x) ≤
−δW (x) + b1C(x), for all x ∈ R, with P eV defined by

P eV (x) :=

∫

eV (y)P (x, dy), for all x ∈ R.

This is equivalent to requiring that,

P eV (x) ≤ eV (x)−δW (x)+b1C (x) for all x ∈ R. (15)

By Proposition 2.6, St is ψ-irreducible and aperiodic. Next, define V (x) =
W (x) := 1 + qx2, for all x ∈ R, where q > 0 is a small number to be chosen.
Consider a compact set C := [−K,K] for a large positive constant K. As in
the proof of Proposition 2.6, C satisfies (12).

Since PeV (x) = E
(

eV (S1) | S0 = x
)

= E
(

eV (x+µ(x)+σ(x)ε)
)

, it follows from
(15) that we need to show for all x ∈ R,

E
(

e1+q(x+µ(x))2+2q(x+µ(x))σ(x)ε+qσ2(x)ε2
)

≤ e(1−δ)V (x)+b1C(x). (16)

To get this, it is sufficient to prove the two conditions below:
Claim 1: for |x| large enough we have

E
(

e1+q(x+µ(x))2+2q(x+µ(x))σ(x)ε+qσ2(x)ε2
)

≤ e(1−δ)(1+qx2). (17)

Claim 2: for small |x|, (that is; for x in any fixed compact), we have

sup
x∈C

E
(

e1+q(x+µ(x))2+2q(x+µ(x))σ(x)ε+qσ2(x)ε2
)

< G(K), (18)

for some positive constant G(K) < ∞, and then once this is done, take b :=
logG(K).

Proof of Claim 1. Using the mean-reverting condition (MRC) in (6), for
|x| large enough, there is a small δ > 0 such that we have (x + µ(x))2 ≤
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(1−4δ)x2 . And since 1 ≤ δ(1+qx2) for |x| large, it follows that e1+q(x+µ(x))2 ≤
e(1−3δ)(1+qx2).

By (A2) there is M > 0 such that, for all x, σ(x) ≤M . If we choose q such
that qM2 < κ/2, then it is enough to show that E

(

e2q|x+µ(x)|M |ε|+(κ/2)ε2
)

≤
e2δqx

2

. By the Cauchy-Schwarz inequality, this requires to prove that,
√

E
(

e4q|x+µ(x)|M |ε|
)

√

E
(

eκε2
)

≤ e2δqx
2

(19)

By (7), the second term on the left-hand side of (19) is the constant
√
I.

This is smaller than eδqx
2

for large enough |x|. So, since again by Condition
(MRC), 4q|x + µ(x)|M ≤ 4qM |x| for |x| large, it follows that we finally have

to show
√

E
(

e4qM |x||ε|
)

≤ eδqx
2

for large |x|, or, equivalently,

E
(

e4qM |x||ε|
)

≤ e2δqx
2

for large |x|. (20)

But applying Lemma 2.8, the left-hand side of (20) is smaller than e16cq
2M2|x|2

for some fixed constant c > 0. Hence, if one chooses q small enough such that
16q2M2c < 2δq and qM2 < κ/2 then (20) holds, showing Claim 1.

Proof of Claim 2. By Assumption (A2), µ is bounded above on any com-
pact C = [−K,K] by some positive constant A. Since µ is bounded on C, the
function x 7→ (x+ µ(x))2 is also bounded on C. We assume it bounded above
on that C by some positive constant B. So, with the later choice of q, we have
the following estimate applying Cauchy-Schwarz Inequality and (7),

E
(

e1+q(x+µ(x))2+2q(x+µ(x))σ(x)ε+qσ2(x)ε2
)

≤ E
(

e1+qB+2q(K+A)M |ε|+(κ/2)ε2
)

≤ e(1+qB)
√

E
(

e4q(K+A)M |ε|
)

√

E
(

eκε2
)

= e(1+qB)
√
I
√

E
(

e4q(K+A)M |ε|
)

.

We then choose K large enough such that 4q(K + A)M ≥ 1 and we get, by
Lemma 2.8, that for all x ∈ C = [−K,K],

E
(

e1+q(x+µ(x))2+2q(x+µ(x))σ(x)ε+qσ2(x)ε2
)

≤ e(1+qB)
√
I
√

e16c′q2(K+A)2M2 ,

for a fixed constant c′ > 0. This holds for all x ∈ C, hence (18) holds true when
taking the supremum over C of the left-hand side of this latter inequality. This
completes the proof of the whole proposition.

Corollary 2.10. The Markov chain Φt = (St−1, St) also satisfies the drift
condition (DV 3+) (i) on p. 6 of [8].
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Proof. This follows from the preceding proposition and Proposition 4.1 (v)
of [8].

Furthermore,

Proposition 2.11. The Markov chain Φt = (St−1, St) also satisfies the
second condition (ii) of (DV 3+) on p.6 of [8], recalled in the proof below.

Proof. We have to show that: there are functions V,W : R2 → [1,∞), and
there is a time t0 > 0 such that for all r < ||W ||∞, there is a measure βr such
that βr(e

V ) :=
∫

R2 e
V (x,y)βr(dx, dy) is finite and we have

Q(x,y)

(

Φt0 ∈ A×B, τCc
W

(r)>t0

)

≤ βr(A×B),

for all (x, y) ∈ CW (r) := {(x, y) : W (x, y) ≤ r} and all A,B ∈ B(R). Here
τCc

W
(r) := min{t ≥ 1 : Φt ∈ Cc

W (r)} and Cc
W (r) denotes the complement of

CW (r).

Consider then the functions V (x, y) =W (x, y) := 1+q(x2+y2) for x, y ∈ R

for a suitable q > 0 as in the proof of Proposition 2.9. Since the chain Φt starts
at time t = 1, we choose here t0 := 2, and let r < ‖W‖∞ = ∞. Then:

If 0 ≤ r < 1, the statement below logically follows.

Suppose r ≥ 1, we have CW (r) = {(x, y) : 1 + q(x2 + y2) ≤ r} = {(x, y) :
x2 + y2 ≤ (r − 1)/q} which is the compact disk of radius (r − 1)/2 in R

2. So
its first and second projections C1 := pr1(CW (r)) and C2 := pr2(CW (r)) are
compact intervals in R.

If A,B ∈ B(R) and (x, y) ∈ CW (r), then x ∈ C1 and y ∈ C2. Hence, setting
for simplicity ∆ := Q(x,y)

(

Φ2 ∈ A×B, τCc
W

(r) > 2
)

, we obtain that,

∆ = P
(

Φ2 ∈ A×B,Φ2 ∈ CW (r) | Φ1 = (x, y)
)

= P
(

Φ2 ∈ (A×B) ∩ CW (r) | Φ1 = (x, y)
)

≤ P
(

S1 ∈ A ∩ C1, S2 ∈ B ∩ C2 | S0 = x, S1 = y
)

= P
(

x+ µ(x) + σ(x)ε0 ∈ A ∩ C1, y + µ(y) + σ(y)ε1 ∈ B ∩ C2

)

≤ JrJ
′
rλ(A ∩ C1)λ(B ∩ C2)

= JrJ
′
rλ2
(

(A×B) ∩ (C1 × C2)
)

=: βr(A×B),

(21)

for some constants Jr and J ′
r (depending on q), using the independence of ε0

and ε1, Fubini’s Theorem and Assumptions (A1), (A2). βr so defined is clearly
a measure on R

2.
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Finally, it is clear that βr(e
V ) =

∫

C1×C2
JrJ

′
re

1+q(x2+y2)λ2(dx, dy) < ∞ as

integral of a continuous function on a compact of R2 with respect to λ2, ending
the proof,

Corollary 2.12. The Markov chain Φt has an invariant probability mea-
sure ν equivalent to the Lebesgue measure λ2 on R

2.

Proof. By Corollary 2.10 and Proposition 2.11 above, Φt satisfies the whole
condition (DV 3+) (i) and (ii). It follows by Theorem 1.2 in [8] that the Markov
chain Φt has a unique invariant probability measure, say ν.

Moreover, from the proof of ψ-irreducibility of Φt in Proposition 2.7, P(Φ2 ∈
·|Φ0 = (x, y)) is λ2-absolutely continuous for each (x, y) ∈ R

2, hence we get
ν ≪ λ2. On the other hand, since the chain Φt is ψ-irreducible with ν as
its invariant probability measure, from the definition of recurrent and positive
chains on pp. 186 and 235 of [10], it follows by Proposition 10.1.1 and Theorem
10.4.9 of the same reference that ν ∼ ψ. But, ψ ≫ λ2 by Proposition 4.2.2 (ii)
in [10], so ν ≫ λ2, and hence ν ∼ λ2, as required.

Next, after this first set of preliminary results, as indicated in the introduc-
tion, we now proceed to the application of classical large deviations techniques
from [2]. First, recall the investor’s wealth process as in (10) for any given
Markovian strategy πt = π(St−1),

V π
t = V0 +

t
∑

n=1

f(Φn), for all time t ≥ 1,

with f(x, y) = π(x)(y − x), for all x, y ∈ R.

We have to insure that, for every πt, the sequence of random variables
(V π

t − V0)t =
∑t

n=1 f(Φn) satisfies the LDP hypotheses, that is; the limit

Λf (θ) := lim
t→∞

1
t logE(e

θ
∑t

n=1
f(Φn)) for each θ ∈ R, exists with Λf satisfying the

remaining conditions in Gärtner-Ellis’ theorem as stated in Theorem 2.3.6, [2].

For that, since we obtained from Corollary 2.10 and Proposition 2.11 that
the Markov chain Φt is ψ-irreducible, aperiodic and satisfies the conditions
(DV 3+) (i), (ii) in [8], we need to apply ergodic results related to Φt from
that article. We adopt the notations of [8] below and before checking the
conditions under which these results hold. Indeed, considering the functions
V,W in the proof of Proposition 2.11, define another functionW0 byW0(x, y) :=
1+ q(|x|+ |y|), for x, y ∈ R, where q is the same as in the definition of V,W in
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that proposition, we obviously see that

lim
r→∞

sup
x,y∈R

(W0(x, y)

W (x, y)
1W (x,y)>r

)

= 0, (22)

which is Condition (6) on p. 7 of [8].
For every θ ∈ R, we observe that θ

∑t
n=1 f(Φn) =

∑t
n=1 Fθ(Φn), where

Fθ = θf . Consider the Banach space LW0
∞ defined on p. 4 of [8] by LW0

∞ :=

{h : R2 → C : supx,y
|h(x,y)|
W0(x,y)

<∞}, which is equipped with the norm ‖h‖W0
:=

supx,y |h(x, y)|/W0(x, y), for h ∈ LW0
∞ . Then we have the following

Lemma 2.13. For all θ ∈ R, the function Fθ belongs to the space LW0
∞ .

Proof. It is enough to show this for θ = 1. Indeed, by the boundedness
assumption of π, for some constant c > 0, we have |π(x)| ≤ c for all x ∈ R. If
follows that |F1(x, y)| ≤ c|y−x| for all x, y ∈ R. Since clearly |y−x| ≤ 1+ |x|+
|y|, then we obtain that |F1(x, y)| ≤ c(1 + |x| + |y|), for all x, y ∈ R. Hence,
taking the supremum over (x, y) ∈ R

2, we get supx,y |F1(x, y)|/W0(x, y) < ∞;

that is F1 ∈ LW0
∞ , as required.

Next, consider the sequence of non-linear operators Γt : L
W0
∞ → LV

∞ defined
as in [8], by setting for all F ∈ LW0

∞ and all (x, y) ∈ R
2,

Γt(F )(x, y) :=
1

t
logEx,y

(

exp
(

t
∑

n=1

F (Φn)
)

)

. (23)

where Ex,y means that we have started the chain from Φ0 := (x, y) and we
compute the expectation accordingly. Then we get,

Proposition 2.14. Let πt be any bounded Markovian strategy in the
model (2). Then there is an analytic function

Λf (θ) := lim
t→∞

1

t
logE(S−1,S0)

(

eθ(V
π
t −V0)

)

,

defined for all θ ∈ R, such that the average sum (V π
t − V0)/t satisfies an LDP

(large deviations principle) with good convex rate function Λ∗
f (the convex

conjugate of Λf ).

Proof. Since Φt satisfies the conditions (DV 3+) (i), (ii) in [8] with the pre-
vious unboundedW , then by Proposition 3.6, [8], there is a non-linear operator
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Γ : LW0
∞ → LV

∞ such that the following uniform convergence holds over balls in
LW0
∞ ,

sup
‖F−F0‖W0

≤δ
‖Γt(F )− Γ(F )‖V → 0 as t→ ∞,

for each F0 and each δ > 0. For every θ ∈ R, set F := Fθ = θg and F0 := 0.
Since V π

t depends on g, it follows that for all θ ∈ R, the limit

Λf (θ) := Γ(Fθ)(S−1, S0)

= lim
t→∞

1
t logE(S−1,S0)

(

exp
(
∑t

n=1 θf(Φn)
)

)

= lim
t→∞

1
t logE(S−1,S0)

(

eθ(V
π
t −V0)

)

,

(24)

exists in R. Moreover, applying Proposition 4.3 (ii) in [8], Λf is an analytic
function of θ.

Again from (ii) of Proposition 4.3, [8], we deduce the second-order Taylor
expansion about zero as, Λf (θ) = Λf (0) + θν(f) + 1

2θ
2vf +O(θ3) for all θ ∈ R,

where ν is the invariant measure of Φt obtained in Corollary 2.12, the expecta-
tion ν(f) :=

∫

R2 f(x, y)ν(dx, dy) is finite, and where vf := lim
t→∞

Eν
∑t

n=1

(

f(Φn)−
ν(f)

)2 6= 0 is the asymptotic variance given in (37), p. 24 of [8]. Hence Λf (θ)
is essentially smooth.

So, applying Gärtner-Ellis Theorem 2.3.6 in [2], we conclude that (V π
t −

V0)/t satisfies an (upper) LDP estimate with good convex rate function Λ∗
f , as

we required.

Proposition 2.15. Under the conditions of the preceding proposition,
ν(f) is the unique minimizer of Λ∗

f . Moreover Λ∗
f (x) > 0 for all x 6= ν(f).

Proof. Using (24), we see that Λf (0) = 0. And from the Taylor expansion
of Λf in the preceding proof, we have Λ′

f (0) = ν(f), so we get by Lemma 2.4 of
[6] that Λ∗

f (ν(f)) = ν(f)×0−Λf (0) = 0. On the other hand, by definition of a
conjugate function, we always have Λ∗

f (x) ≥ 0× x−Λf (0) = 0 for all x ∈ R. It
follows that ν(f) is a global minimizer for Λ∗

f . Since by Proposition 2.14 above,
Λf is analytic hence differentiable, it follows that its conjugate Λ∗

f is strictly
convex on its effective domain which is, in fact, R. This implies that the global
minimizer ν(f) for Λ∗

f is unique. And this uniqueness implies that Λ∗
f (x) > 0

for all x 6= ν(f), as required.

Finally, before the proof of the main theorem, we give the following
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Proposition 2.16. Suppose that the market price of risk function ϕ in
Definition 2.3 satisfies the risk-condition (RC) set in (8). Then the bounded
Markovian strategy π0t constructed in (9) satisfies

ν(f) = E
(

π0(S̃0)(S̃1 − S̃0)
)

> 0, (25)

where (S̃0, S̃1) has distribution ν, the invariant probability measure of Φt.

Proof. Since ν is a probability measure on B(R2) and is invariant for the
Markov chain Φt = (St−1, St), then there is a pair of R-valued random variables
(S̃0, S̃1 = S̃0 + µ(S̃0) + σ(S̃0)ε1) on Ω with distribution ν and such that ε1 is
still independent of S̃0. For all x ∈ R,

E
(

S̃1 | S̃0 = x
)

= E
(

x+ µ(x) + σ(x)ε1 | S̃0 = x
)

= x+ µ(x) + σ(x)E(ε1 | S̃0 = x)

= x+ µ(x) + σ(x)E(ε1) by independence of ε1 from S̃0
= x+ σ(x)ϕ(x) by Assumption (A3).

Since (A2) implies σ > 0, it follows that if x ∈ R0 (the set defined in (8)),
then we have

E(S̃1 | S̃0 = x) 6= x. (26)

Consider our constructed strategy π0t given by the function
π0(x) := 1R+

0

(x) − 1R−

0

(x), for all x ∈ R. By Corollary 2.12, ν has a λ2-a.e.

positive density with respect to λ2, hence its S̃0-marginal, denoted by η, has a
λ-a.e. positive density ℓ(x). Therefore,

ν(f) =
∫

R
E
(

π0(x)(S̃1 − x) | S̃0 = x
)

η(dx)

=
∫

R0
E
(

S̃1 − x | S̃0 = x
)

ℓ(x)λ(dx)

=
∫

R0
sgn(E

(

S̃1 − x | S̃0 = x
)

)E
(

S̃1 − x | S̃0 = x
)

ℓ(x)λ(dx),

which is strictly positive. Hence ν(f) > 0, showing the result.

Proof of Theorem 2.4. Proposition 2.14 says that the average sum (V π0

t −
V0)/t satisfies an LDP with good rate function Λ∗

f and Proposition 2.16 above
says ν(f) > 0. Next by Proposition 2.15, ν(f) is the unique minimizer of Λ∗

f ,
and by strict convexity, Λ∗

f is decreasing on (−∞, ν(f)]. Hence applying the
upper LDP inequality (2.3.7) of Gärtner-Ellis Theorem 2.3.6 in [2], we get,

lim sup
t→∞

1

t
logP

(

V π0

t − V0
t

< ν(f)/2

)

≤ − inf
x∈(−∞,ν(f)/2]

Λ∗
f (x).
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But
− inf

x∈(−∞,ν(f)/2]
Λ∗
f (x) = −Λ∗

f (ν(f)/2).

These imply, under the defining ALA hypothesis V0 = 0, that

P
(

V π0

t ≥ ν(f)t/2
)

≥ 1− e−tΛ∗

f
(ν(f)/2)

for all large time t.
To complete the proof of the theorem, it remains to check that Λ∗

f (ν(f)/2) >
0, which clearly follows by Proposition 2.15 again since ν(f)/2 6= ν(f),

Remark 2.17. The additional research advance in the subject of asymp-
totic arbitrage theory provided by this new result is that the self-financing
strategy π0t generating ALA with GDP -F is explicitly constructed unlike in
other works, as in [5], treating existence of earlier forms of asymptotic arbi-
trage.

Example 2.18. (The Discrete-Time Ornstein-Uhlenbeck Process)
Consider the discrete-time Ornstein-Uhlenbeck (O-U) process,

St+1 = αSt + εt+1, for all time t ≥ 1, (27)

where 0 < |α| < 1 and S0 are constants and εt are i.i.d N (0, 1). St is also
known as a stable auto-regressive process AR(1).

In this stock prices model, the drift and volatility functions are identified
as µ(x) = (α − 1)x and σ(x) = 1, for all x ∈ R, and are clearly measurable.
Hence the market price of risk function is ϕ(x) = (α − 1)x, for all x ∈ R. The
mean-reverting condition in (6) and all the remaining conditions of Theorem
2.4 trivially hold. From (8) we find R0 = R \ {0} ≡ R

∗, R+
0 = R

∗
− and

R−
0 = R

∗
+. Obviously, λ(R0) = ∞ > 0. It follows that the corresponding

constructed strategy π0t = 1R∗

−

(St−1)−1R∗

+
(St−1) produces ALA with GDP -F

in the investor’s wealth (2) for this discrete-time O-U model of stock prices.

Example 2.19. (A Cox-Ingersoll-Ross Type Process) In Mathemat-
ical Finance the process described by the stochastic differential equation

dZt = −βZtdt+ σ
√

|Zt|dWt (28)

is often is called the Cox-Ingersoll-Ross (CIR) process and is used to model
stochastic volatility or the short rate in bond markets. Here Wt is Brownian



ASYMPTOTIC LINEAR ARBITRAGE AND UTILITY-BASED... 105

motion. We present a slight modification of the discretization of this model here.
The modifications are necessary, since the volatility of Zt is neither bounded
above nor below. For that, let us define the stock prices process by

St+1 = αSt + σmin{max{
√

|St|,M}, η}εt, t ≥ 1, (29)

where |α| < 1, σ > 0, 0 < η < M are given constants and εt are as in the
preceding example.

It is easy to check that the CIR type process St also satisfies the conditions
of Theorem 2.4.

3. Utility-Based Asymptotic Linear Arbitrage

For this section, the stock prices process St, predictable (self-financing) strate-
gies πt and the corresponding wealth process V π

t are still assumed relative to the
same models and the filtered probability space (Ω,F ,F,P) of the introductory
Section 1.

Consider the concept of expected utility of investors’ wealth discussed for
e.g. in [4, Chap. 5]. If U : R → R is a strictly increasing function, then
U(V π

t ) represents the measure/level of satisfaction at time t for an investor
using strategy πt on his/her amount of wealth V π

t with respect to the risk of
losses. And EU(V π

t ) is the expected level of such a satisfaction. U is called
a utility function and it is strictly increasing because investors usually prefer
more money than less. Moreover, utility functions are assumed either concave
for risk-averse investors, or convex for risk-seeking investors, or linear for risk-
neutral investors in the market. Usually, it is rare to see investors behaving in
a risk-neutral way i.e., being indifferent between preferring a random (risky)
outcome on their investments and a certain (riskless) amount of wealth. Hence,
as announced at the end of the introduction, we introduce below the concept
of utility-based asymptotic linear arbitrage only for risk-averse or risk-seeking
investors.

Definition 3.1. Let U be any utility function (convex or concave). We say
that a trading strategy πt generates a utility-based asymptotic linear arbitrage
with respect to U (abbreviated by U -ALA w.r.t. U), if starting from zero
initial capital V0 corresponding to zero or negative initial utility level U(V0),
the expected utility EU(V π

t ) increases (at least) linearly fast in long-term, i.e.,
EU(V π

t ) ≥ b+ct for all large enough time t ≥ 1, for some constants b and c > 0.
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For the result of the section stated below, we consider only risk-seeking
investors with the class of convex utility functions Uα : R → R, for a fixed
real constant α > 0, defined by Uα(x) := eαx − 1, for all x ∈ R. Similarly
to the coefficient of constant risk-aversion (CARA) defined in [4, Chap. 5], α
represents here the level of risk-seeking for those investors: the higher α is,
the more an investor takes risk and may hence get higher satisfaction. This is
typical to investors known as speculators in financial markets. Then we have
the following

Theorem 3.2. Let πt be any trading strategy in the models (1) and (2).
If πt is an ALA (with GDP -F ), then πt also generates U -ALA w.r.t Uα.

Proof. First, to the investor’s initial capital V0 = 0, it corresponds the
initial utility Uα(V0) = e0 − 1 = 0. Next, by definition of ALA, there are a
constant a > 0 and a time t1/2 such that we have P(V π

t ≥ at) ≥ 1/2 for all time
t ≥ t1/2. It follows by monotonicity and convexity of Uα that

EUα(V
π
t ) ≥ −1 + EUα(at)1{V π

t ≥at} (30)

= −1 + Uα(at)P(V
π
t ≥ at)

≥ −1 + (1/2)(eαat − 1)

≥ 1

2
(−3 + αat), (31)

for all large enough time t, as required.

To conclude this section, let us explain how in practice this easily proved re-
sult may connect long-term arbitrageurs’ investment performances with market
speculators’ level of satisfaction. Indeed, if a speculator investor risks higher
by investing an amount of money on the stock St and chooses a utility function
Uα, moreover if, as guaranteed by the existence Theorem 2.4, s/he manages
to construct an ALA with GDP -F strategy in the market models (1) and (2),
then while his/her wealth grows linearly fast (with probability tending to 1),
his/her expected level of satisfaction increases also (at least) linearly fast in
long-term.
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