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Abstract: A Goppa code is described in terms of a polynomial, known as
Goppa polynomial, and in contrast to cyclic codes, where it is difficult to esti-
mate the minimum Hamming distance d from the generator polynomial. Fur-
thermore, a Goppa code has the property that d ≥ deg(h(X)) + 1, where h(X)
is a Goppa polynomial. In this paper, we present a decoding principle for
Goppa codes constructed by generalized polynomials, which is based on modi-
fied Berlekamp-Massey algorithm.
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1. Introduction

Let (S, ∗) be a commutative semigroup and (R,+, ·) a commutative associative
ring. The set J of all finitely nonzero functions f from S into R is a ring with
respect to binary operations addition and multiplication defined as (f+g)(s) =
f(s)+ g(s) and (fg)(s) =

∑

t∗u=s f(t)g(u), where the symbol
∑

t∗u=s indicates
that the sum is taken over all pairs (t, u) of elements of S such that t∗u = s and if
s is not expressible in the form t∗u for any t, u ∈ S, then (fg)(s) = 0. The set J
is known as semigroup ring of S over R. If S is a monoid, then J is called monoid
ring. This ring J is represented as B[S], where S is a multiplicative semigroup,
and the elements of J are written either as

∑

s∈S f(s)s or as
∑n

i=1 f(si)si.
The representation of J will be R[X;S] whenever S is an additive semigroup.
As there is an isomorphism between additive semigroup S and multiplicative
semigroup {Xs : s ∈ S}, it follows that a nonzero element f of R[X;S] is
uniquely represented in the canonical form

∑n
i=1 f(si)X

si =
∑n

i=1 fiX
si , where

fi 6= 0 and si 6= sj for all i 6= j. Degree is not generally defined in commutative
semigroup rings but if the semigroup S is a totally ordered semigroup, we can
define the degree of a generalized polynomial of the semigroup ring R[X;S].
If f =

∑n
i=1 fiX

si is the canonical form of the nonzero element f ∈ R[X;S],
where s1 < s2 < · · · < sn, then sn is called the degree of f and we write
deg(f) = sn.

2. Goppa Code

Let (B,N) be a finite local commutative ring with unity and K the residue
field B

N
∼= GF (pm), where p is a prime, m a positive integer. The natural

projection π : B[X; 13Z0] → K[X; 13Z0] is defined by π(a(X
1

3 )) = a(X
1

3 ), i.e.,

π(
∑n

i=0 aiX
1

3
i) =

∑n
i=0 aiX

1

3
i, where ai = ai + N). Let f(X

1

3 ) be a monic

pseudo polynomial of degree t in B[X; 13Z0] such that π(f(X
1

3 )) is irreducible in

K[X; 13Z0]. Since B[X;Z0] ⊆ B[X; 13Z0] [1, Theorem 7.2], it follows that f(X
1

3 )

is also irreducible in B[X; 13Z0], by [2, Theorem XIII.7]. If ℜ =
B[X; 1

3
Z0]

(f(X
1
3 ))

, then ℜ

is a finite commutative local factor semigroup ring with unity and again by [1,
Theorem 7.2] accommodate our notions to say that it is a Galois ring extension
of B with extension degree t. Its residue field is K1 = ℜ

N1
= GF (p3mt), where

N1 is the maximal ideal of ℜ, and K
∗
1 is the multiplicative group of K1 whose

order is p3mt − 1.

Let ℜ∗ denote the multiplicative group of units of ℜ and ℜ∗ being an Abelian
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group can be expressed as a direct product of cyclic groups. Our focus is in
the maximal cyclic subgroup of ℜ∗, hereafter denoted by Gs, whose elements
are the roots of Xs − 1 for some positive integer s. There is only one maximal
cyclic subgroup of ℜ∗ having order s = p3mt − 1. Let β = α

1

3 be a primitive
element of the cyclic group Gs, where s = p3mt− 1. Let h(X

1

3 ) = h0 + h1X
1

3 +

h2(X
1

3 )2 + · · ·+ h3r(X
1

3 )3r be a polynomial with coefficients in ℜ and h3r 6= 0.
Let T = {α1, α2, · · · , αn} be a subset of distinct elements of Gs such that h(αi)
are units from ℜ for i = 1, 2, · · · , n.

Definition 1. [3, Definition 4] A shortened Goppa code C(T, h) of length
n ≤ s is a code over B that has parity-check matrix

H =











h(α1)
−1 · · · h(αn)

−1

α1h(α1)
−1 · · · αnh(αn)

...
. . .

...

α3r−1
1 h(α1)

−1 · · · α3r−1
n h(αn)











, (1)

where r is a positive integer, η = (α1, α2, · · · , αn) is the locator vector, con-
sisting of distinct elements of Gs and ω = (h(α1)

−1, · · · , h(αn)
−1) is a vector

consisting on elements of Gs.

Theorem 1. (see Theorem 7, [4]) The Goppa code C(T, h) has minimum

Hamming distance d ≥ 3r + 1.

3. Decoding Procedure

The decoding algorithm is based on the modified Berlekamp-Massey algorithm
[5] which corrects all errors up to the Hamming weight t ≤ 3r

2 , i.e., whose min-
imum Hamming distance is 3r + 1. The decoding procedure for these codes
consists of four major steps: calculation of the syndromes, calculation of the
error-locator polynomial, calculation of the error-location numbers, and calcu-
lation of the error magnitudes.

Let β = α
1

3 be a primitive element of the cyclic groupGs, where s = p3mt−1.
Let c = (c1, c2, · · · , cn) be a transmitted codeword and b = (b1, b2, · · · , bn) be
the received vector. Thus the error vector is given by e = (e1, e2, · · · , en) =
b − c. Let η = (α1, α2, · · · , αn) = (βk1 , βk2 , · · · , βkn) be a vector over Gs.
Suppose that ν ≤ t is the number of errors which occurred at locations x1 =
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αi1 , x2 = αi2 , · · · , xν = αiν with values y1 = ei1 , y2 = ei2 , · · · , yν = eiν . The
syndrome values sl of an error vector e = (e1, e2, · · · , en) is defined as

sl =

n
∑

j=1

ejh(αj)
−1αl

j, for l ≥ 0.

Since s = (s0, s1, · · · , s3r−1) = bHt = eHt, it follows that the first 3r syndrome
values sl can be calculated from the received vector b as follow

sl =

n
∑

j=1

ejh(αj)
−1αl

j =

n
∑

j=1

bjh(αj)
−1αl

j , for l = 0, 1, 2, · · · , 3r − 1.

The elementary symmetric functions σ1, σ2, · · · , σν of the error-location num-
bers x1, · · · , xν are defined as the coefficients of the polynomial

σ(X) =
ν
∏

i=1

(X − xi) =
ν

∑

i=0

σiX
ν−i,

where σ0 = 1. Thus, the decoding algorithm being proposed consists of four
major steps: calculation of the syndrome vector s from the received vector;
calculation of the elementary symmetric functions σ1, σ2, · · · , σν from s, using
the modified Berlekamp-Massey algorithm [5]; calculation of the error-location
numbers x1, x2, · · · , xν from σ1, σ2, · · · , σν , that are roots of σ(X); and cal-
culation of the error magnitudes y1, y2, · · · , yν from xi and s, using Forney′s
procedure [6].

Since the calculation of the vector syndrome is straightforward, it follows
that there is no need to comment on Step 1. In Step 2, the calculation of the el-
ementary symmetric functions is equivalent to finding a solution σ1, σ2, · · · , σν ,
with minimum possible ν, to the following set of linear recurrent equations over
ℜ, i.e.,

sj+ν + sj+ν−1σ1 + · · ·+ sj+1σν−1 + sjσν = 0, for j = 0, 1, 2, · · · , (3r − 1)− ν,

(3.1)
where s0, s1, · · · , s3r−1 are the components of the syndrome vector. From the
modified Berlekamp-Massey algorithm, it follows that the solutions of Equation
(3.1). The algorithm is iterative, in the sense that the following n− ln equations
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(called power sums)



































snσ
(n)
0 + sn−1σ

(n)
1 + · · ·+ sn−lnσ

(n)
ln

= 0

sn−1σ
(n)
0 + sn−2σ

(n)
1 + · · ·+ sn−ln−1σ

(n)
ln

= 0

...

sln+1σ
(n)
0 + slnσ

(n)
1 + · · ·+ s1σ

(n)
ln

= 0

are satisfied with ln as small as possible and σ
(0)
0 = 1. The polynomial σ(n)(X) =

σ
(n)
0 +σ

(n)
1 X + · · ·+σ

(n)
ln

Xn represents the solution at the n-th stage. The n-th

discrepancy is denoted by dn and defined by dn = snσ
(n)
0 + sn−1σ

(n)
1 + · · · +

sn−lnσ
(n)
ln

. The modified Berlekamp-Massey algorithm is formulated as: the
inputs to the algorithm are the syndromes s0, s1, · · · , s3r−1 which belong to ℜ.
The output of the algorithm is a set of values σi, for i = 1, 2, · · · , ν, such that
Equation (3.1) holds with minimum ν. Let σ(−1)(X) = 1, l−1 = 0, d−1 = 1,
σ(0)(X) = 1, l0 = 0 and d0 = s0 be the a set of initial conditions to start the
algorithm as in Peterson [7]. The steps of the algorithm are:

1. n← 0.

2. If dn = 0, then σ(n+1)(X)← σ(n)(X) and ln+1 ← ln and to go 5).

3. If dn 6= 0, then find m ≤ n − 1 such that dn − ydm = 0 has a solution
y and m − lm has the largest value. Then, σ(n+1)(X) ← σ(n)(X) −
yXn−mσ(m)(X) and ln+1 ← max{ln, lm + n−m}.

4. If ln+1 = max{ln, n+ 1− ln} then go to step 5, else search for a solution
D(n+1)(X) with minimum degree l in the range max{ln, n+1− ln} ≤ l <

ln+1 such that σ(m)(X) defined by D(n+1)(X)−σ(n)(X) = Xn−mσ(m)(X)

is a solution for the first m power sums, dm = −dn, with σ
(m)
0 a zero

divisor in ℜ. If such a solution is found, σ(n+1)(X) ← D(n+1)(X) and
ln+1 ← l.

5. If n < 3r − 1, then dn = sn + sn−1σ
(n)
1 + · · · + sn−lnσ

(n)
ln

.

6. n← n+ 1; if n < 3r − 1 go to 2); else stop.

The coefficients σ
(3r)
1 , σ

(3r)
2 , · · · , σ

(3r)
ν satisfy Equation (3.1).
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At Step 3, the set of possible error-location numbers is a subset of Gs

and the solution to Equation (3.1) is generally not unique and the recip-
rocal polynomial ρ(Z) of the polynomial σ(3r)(Z) (output by the modified
Berlekamp-Massey algorithm), may not be the correct error-locator polyno-
mial (Z − x1)(Z − x2) · · · (Z − xν), where xj = βki , for j = 1, 2, · · · , ν and
i = 1, 2, · · · , n, are the correct error-location numbers. Now, compute the roots
z1, z2, · · · , zν of ρ(Z), and among the xi = βkj , for j = 1, 2 · · · , n, select those
xi’s such that xi−zi are zero divisors in ℜ. The selected xi’s will be the correct
error-location numbers and each kj , for j = 1, 2, · · · , n, indicates the position
j of the error in the codeword.

At Step 4, the calculation of the error magnitude is based on Forney′s
procedure [6]. The error magnitude is given by

yj =

∑ν−1
l=0 σjlsν−1−l

Ej

∑ν−1
l=0 σjlx

ν−1−l
j

, (3.2)

for j = 1, 2, · · · , ν, where the coefficients σjl are recursively defined by σj,i =
σi + xjσj,i−1, for i = 0, 1, · · · , ν − 1, starting with σ0 = σj,0 = 1. The Ej =
h(xi)

−1, for i = 1, 2, · · · , ν, are the corresponding location of errors in the vector
w. It follows from [4] that the denominator in Equation (3.2) is always a unit
in ℜ.

Example 1. Let B = GF (2)[i] and ℜ =
B[X; 1

3
Z0]

(f(X
1
3 ))

, where f(X
1

3 ) = (X
1

3 )9+

(X
1

3 )3 + 1 is irreducible over B. If X
1

3 = Y , then f(Y ) = Y 9 + Y 3 + 1.

If β = α
1

3 is a root of f(Y ), then α
1

3 generates a cyclic group Gs of order

s = 23(3) − 1. If h(X
1

3 ) = (X
1

3 )4 + (X
1

3 )3 + 1, T = {α,α5, α2, 1, α3, α
7

2 , α4, α6}

and ω = {α2, α4, α4, 1, α, α
1

2 , α3, α2}, then

H =











α2 α4 α4 1 α α
1

2 α3 α2

α3 α2 α2 1 α4 α4 1 α

α4 1 α5 1 1 α
1

2 α4 1
α5 α5 1 1 α3 α4 α α6











is the parity check matrix of a Goppa code over B of length 8 and, by Theorem
1, the minimum Hamming distance is at least 5. Now, if the received vector
is given by b = (0, i, 0, 0, 0, 0, 0, 0), then the syndrome vector is given by s =
bHt = (iα3, iα, iα6, iα4). Applying the modified Berlekamp-Massey algorithm,
it follows that σ(4)(Z) = 1 + α5Z. The root of ρ(Z) = Z + α5 (the reciprocal
of σ(4)(Z) is z1 = α5. Among the elements of Gs it follows that x1 = α5
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is such that x1 − z1 = 0 is a zero divisor in ℜ. Therefore, x1 is the correct
error-location number, and k2 = 5 indicates that one error has occurred in the
second coordinate of the codeword. Finally, applying Forney’s method to s and
x1, gives y1 = i. Therefore, the error pattern is given by e = (0, i, 0, 0, 0, 0, 0, 0).
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