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Abstract: A finite set of points in the plane is described as in convex position
if it forms the set of vertices of a convex polygon. Let P be a set of n points in
convex position in the plane, this work studies the ratio between the maximum
area of convex (n − 2)-polygons with vertices in P and the area of the convex
hull of P , and the ratio between the maximum area of convex (n− 1)-polygons
with vertices in P and the area of the convex hull of P respectively.
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1. Introduction

A finite set of points in the plane is described as in convex position if it forms
the set of vertices of a convex polygon. Let P be a finite set of points in
convex position in the plane, hence any subset of P is also a point set in convex
position. Denote the area of the convex hull of Q ⊂ P by S(Q). For the sake
of convenience we may call a subset Q ⊂ P a polygon if Q forms the vertices
of a polygon. Let
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fk(P ) =: max
{S(Q)

S(P )
: Q ⊂ P, |Q| = k, P is in convex position

}

,

f conv
k (n) =: min{fk(P ) : |P | = n, P is in convex position}.

In 1992, Fleischer et al. [1] showed that in the study of motion-planning
problems in robotics by using heuristics, the largest area polygons in a planar
point set play an important role. Hosono et al. [2] mainly studied f conv

3 (n). Du
and Ding studied f conv

4 (n) and f conv
5 (n) respectively in [3] and [4]. In this work

we evaluate f conv
n−1 (n) and f conv

n−2 (n).

2. Main Results

Theorem 1. f conv
n−1 (n) ≥

1

2− f conv
n−2 (n− 1)

.

Proof. Let P be a convex n-gon with vertices A1, A2, · · ·, An in clockwise
order. Suppose (n−1)-gon Q = A1A2 ···An−1 is the one which has the maximum
area of all the (n − 1)-gons of P . By an affine transformation, assume that
A1 = (0, 0), A2 = (0, 1), An−1 = (1, 0), An−2 = (a, b) (a > 0, b > 0). See Figure
1.

Let f be the line through A1 and An−2, and let f ′ be the parallel line
through An−1. Similarly, let g be the line through A2 and An−1, and let g′ be
the parallel line through A1. For Q has the maximum area of all the (n − 1)-
gons of P , An must lie completely above f ′ and g′. Denote B = f ′ ∩ g′, then
B = ( b

a+b
, −b
a+b

) and An ∈ △A1BAn−1, hence P is always contained in the
convex n-gon P1 = A1A2 · · ·An−1B.

Let T = {△AiAi+1Ai+2|i = 1, 2, · · ·, n − 1}
(

the addition in the subscript
is in modulo (n − 1)

)

, that is, T is the set of all the triangles formed by three
consecutive vertices of Q. Without loss of generality, let △A2A3A4 be the
triangle of T which has the minimum area. Hence (n − 2)-gon Q1 = A1A2A4 ·
· · An−1 is the one which has the maximum area of all the (n− 2)-gons of Q.

Suppose S(△A2A3A4) = α, then S(Q1) = S(Q)− α.

By the definition of f conv
n−2 (n − 1), S(Q1)

S(Q) ≥ f conv
n−2 (n − 1), that is, S(Q)−α

S(Q) ≥

f conv
n−2 (n− 1), thus

α

S(Q)
≤ 1− f conv

n−2 (n − 1). (1)

Let An = (x0, y0). Since Q has the maximum area of all the (n − 1)-gons
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Figure 1

of P , then

S(△A2A3A4) ≥ S(△A1An−1An) =⇒ α ≥
−y0
2

=⇒ y0 ≥ −2α.

So An lies above the horizontal line h : y = −2α.

Case 1. Suppose B lies above the line h, then
b

a+ b
≤ 2α. Notice that

P ⊂ P1 and so S(P ) ≤ S(P1), where S(P1) = S(Q) + S(△A1BAn−1) =

S(Q) +
b

2(a+ b)
.

Hence by (1),

S(P )

S(Q)
≤

S(P1)

S(Q)
= 1 +

b
2(a+b)

S(Q)
≤ 1 +

α

S(Q)
≤ 2− f conv

n−2 (n− 1),



704 Y. Du, H. Feng, H. Tan

S(Q)

S(P )
≥

1

2− f conv
n−2 (n− 1)

.

Case 2. Suppose B lies below the line h, then
b

a+ b
> 2α. So S(P ) ≤

S(P2), where P2 = A1A2 ···An−1C is a n-gon with C = g′∩h. Since g′ : y = −x,
h : y = −2α, C = (2α,−2α), then S(P2) = S(Q)+S(△A1An−1C) = S(Q)+α.
Hence by (1),

S(P )

S(Q)
≤

S(P2)

S(Q)
=

S(Q) + α

S(Q)
= 1 +

α

S(Q)
≤ 2− f conv

n−2 (n− 1),

S(Q)

S(P )
≥

1

2− f conv
n−2 (n− 1)

.

From the above argument, we obtain that for any n-point set P in convex

position we have fn−1(P ) ≥
1

2− f conv
n−2 (n− 1)

and hence

f conv
n−1 (n) ≥

1

2− f conv
n−2 (n− 1)

.

Theorem 2. f conv
n−2 (n) ≥

1

3− 2f conv
n−3 (n− 2)

.

Proof. Let P be a convex n-gon with vertices A1, A2, · · · An in clockwise
order. Suppose (n − 2)-gon Q is the one which has the maximum area of all
the (n − 2)-gons of P . Here the set of vertices of Q is a subset of {A1, A2, · · ·
An}. We have only two types of (n− 2)-gon Q:

Type I: Vertices of Q are non-consecutive in {A1, A2, · · · An};
Type II: Vertices of Q are consecutive in {A1, A2, · · · An}.
See Figure 2 for two types of Q, where n = 8, and Q′s in Figure 2 (a), (b),

(c) are of type I, and Q in Figure 2 (d) is of type II. For Q of type I it suffices
to prove the theorem for Q as shown in Figure 2 (a).

Assume Q = A1A3A4A5A6A7, P1 = A1A2A3A4A5A6A7, P2 = A1A3A4

A5A6A7A8, then Q is also the one which has the maximum area of all the
hexagons of P1 and of P2. By Theorem 1, we have

S(P )

S(Q)
=

S(P1) + S(P2)− S(Q)

S(Q)
≤ 2

(

2− f conv
5 (6)

)

− 1 = 3− 2f conv
5 (6).

Thus
S(Q)

S(P )
≥

1

3− 2f conv
5 (6)

.
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Figure 2

For other values of n the proof is similar, and we can get

S(P )

S(Q)
=

S(P ′
1) + S(P ′

2)− S(Q)

S(Q)
≤ 2

(

2− f conv
n−3 (n− 2)

)

− 1 = 3− 2f conv
n−3 (n− 2).

Thus
S(Q)

S(P )
≥

1

3− 2f conv
n−3 (n− 2)

.

Now we prove the theorem when Q is of type II, as shown in Figure 2 (d) for
n = 8 and Figure 3 for all possible values of n. Q is formed by (n−2) consecutive
vertices of P . Without loss of generality, let Q = A1A2 · · ·An−2. Assume (by an
affine transformation) that A1 = (0, 0), A2 = (0, 1), An−2 = (1, 0), An−3 = (a, b)
(a > 0, b > 0). See Figure 3.

Let f be the line through A1 and An−3, and let f ′ be the parallel line
through An−2. Similarly, let g be the line through A2 and An−2, and let g′ be
the parallel line through A1. Denote B = f ′ ∩ g′, then B = ( b

a+b
, −b
a+b

). Similar
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Figure 3

to the proof of Theorem 1, here An−1, An ∈ △A1BAn−2 and P is always
contained in the convex (n− 1)-gon P1 = A1A2 · · · An−2B.

Let T = {△AiAi+1Ai+2|i = 1, 2, · · ·, n − 2}
(

the addition in the subscript
is in modulo (n− 2)

)

. Without loss of generality, let △A2A3A4 be the triangle
of T which has the minimum area. Hence (n − 3)-gon Q1 = A1A2A4 · · · An−2

is the one which has the maximum area of all the (n− 3)-gons of Q.

Suppose S(△A2A3A4) = α, then S(Q1) = S(Q)− α.

Similarly to the proof of Theorem 1, An−1, An lies above the horizontal

line h : y = −2α, and
S(Q1)

S(Q)
≥ f conv

n−3 (n− 2), that is,
S(Q)− α

S(Q)
≥ f conv

n−3 (n− 2),

thus
α

S(Q)
≤ 1− f conv

n−3 (n − 2). (2)
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Case 1. Suppose B lies above the line h, then
b

a+ b
≤ 2α. By the same

argument as in case 1 of Theorem 1, then
S(P )

S(Q)
≤

S(P1)

S(Q)
≤ 1 +

α

S(Q)
≤

2− f conv
n−3 (n− 2) < 3− 2f conv

n−3 (n− 2) , thus
S(Q)

S(P )
>

1

3− 2f conv
n−3 (n− 2)

.

Case 2. Suppose B lies below the line h, then
b

a+ b
> 2α. So P must be

contained in the n-gon P2 = A1A2 · · · An−2DC, where C = g′ ∩ h, D = f ′ ∩ h
and C = (2α,−2α).

S(P2) = S(Q) + S(A1An−2DC) < S(Q) + 2S(△A1CAn−2) = S(Q) + 2α,

(

∵ S(△CDAn−2) < S(A1DAn−2) = S(A1CAn−2)
)

.

Hence by (2), we get
S(P )

S(Q)
≤

S(P2)

S(Q)
<

S(Q) + 2α

S(Q)
= 1 +

2α

S(Q)
≤ 3 −

2f conv
n−3 (n− 2) , thus

S(Q)

S(P )
≥

1

3− 2f conv
n−3 (n− 2)

.

From the above argument, we obtain that for any n-point set P in con-

vex position we have fn−2(P ) ≥
1

3− 2f conv
n−3 (n− 2)

and hence f conv
n−2 (n) ≥

1

3− 2f conv
n−3 (n− 2)

.

Lemma 1. Let Pn be the set of vertices of a regular n-gon, and let
rk(n) =: fk(Pn), then

rk(n) =
k sin 2π

k

n sin 2π
n

when n ≡ 0 mod k;

rk(n) =
(k − 1) sin

⌊n

k
⌋2π

n
+ sin

⌈n

k
⌉2π

n

n sin 2π
n

when n ≡ 1 mod k;

rk(n) =
(k − 2) sin

⌊n

k
⌋2π

n
+ 2 sin

⌈n

k
⌉2π

n

n sin 2π
n

when n ≡ 2 mod k;

· · · · · ·

rk(n) =
2 sin

⌊n

k
⌋2π

n
+ (k − 2) sin

⌈n

k
⌉2π

n

n sin 2π
n

when n ≡ (k − 2) mod k;
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Figure 4

rk(n) =
sin

⌊n

k
⌋2π

n
+ (k − 1) sin

⌈n

k
⌉2π

n

n sin 2π
n

when n ≡ (k − 1) mod k.

Proof. Suppose that the maximum area k-gon P = A1A2 ···Ak with vertices
in Pn divides the boundary of the convex hull of Pn into k chains A1A2, A2A3,
· · ·, Ak−1Ak and AkA1, with a1, a2, · · ·, ak−1 and ak edges, respectively, as
shown in Figure 4.

For any two of edge numbers a1, a2, · · ·, ak, say, ai and aj (i < j), the
number of edge numbers between them is m = j − i − 1 (0 ≤ m ≤ k − 2), we
prove that ai and aj differ at most by 1 by induction on m.

For m = 0, that is, for any two adjacent edge numbers, the assertion is true.
If not, say, for a1 and a2 we have a1 − a2 ≥ 2. See Figure 5.

Let B be the nearest point of Pn to A2 in clockwise order. Observe that
since a1 − a2 ≥ 2, the numbers of points of Pn on Â1A2 is at least two more
than that on Â2A3. Then S(△A1BA3) > S(△A1A2A3), and the area of k-gon
A1BA3 · · · Ak is greater than the area of k-gon P , contradicting the choice of
P .
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Figure 5

Suppose the conclusion true for the case when the number of edge numbers
between ai and aj is less than m, and consider the case when it equals m.

Suppose on the contrary, say, for a1 and am+2 we have a1 − am+2 ≥ 2.
Therefore, by the induction hypothesis, we only need to consider the case a1 =
t, a2 = a3 = · · · = am+1 = t− 1, am+2 = t− 2.

Let B2, B3, · · ·, Bm+2 be the nearest point of Pn to A2, A3, · · · and Am+2 in
clockwise order, respectively. Then the area of k-gon A1B2B3···Bm+2Am+3···Ak

is greater than the area of k-gon P , contradicting the choice of P .

For example, let m = 3, t = 5 and let B2, B3, B4, B5 be the nearest
point of Pn to A2, A3, A4 and A5 in clockwise order, respectively. See Figure
6. Recall that Pn is the set of vertices of a regular n−gon, B5A5//A4A6, so
S(△A4B5A6) = S(△A4A5A6), replace A5 by B5 in k-gon A1A2···Ak and denote
the new k-gon by P1, S(P1) = S(P ). Similarly, S(△A3B4B5) = S(△A3A4B5),
so we can replace A4 by B4 in k-gon P1 and obtain another new k-gon P2 with
S(P2) = S(P ). Replace A3 by B3 in k-gon P2 and we obtain the third new k-gon
P3 with S(P3) = S(P ). At last, we replace A2 by B2 in k-gon P3 and obtain the
k-gon P4 = A1B2B3B4B5A6 · · ·Ak . Obviously S(△A1B3B2) > S(△A1B3A2),
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Figure 6

and hence S(P4) > S(P3) = S(P ), contradicting the choice of P .

Therefore, we conclude that the maximal area k-gon splits the boundary
into k chains whose numbers of edges are { t, t, ···, t, t}, { t, t, ···, t, t+1 }, {t, t, ··
·, t + 1, t + 1}, · · ·, {t, t + 1 · ··, t + 1, t + 1}, when n ≡ 0, 1, · · ·, k − 1 mod k,
respectively. An easy computation can lead to the claimed formulas.
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Notice that each rk(n) is a decreasing function. Thus we can deduce that

lim
n→∞

rk(n) =
k

2π
sin

2π

k
.

Lemma 2. ([5]) Let B be a compact convex body in the plane and Bk be
a largest area k-gon inscribed in B. Then area(Bk) ≥ area(B) k

2π sin 2π
k
, where

equality holds if and only if B is an ellipse.

From Theorem 1, Theorem 2, Lemma 1 and Lemma 2, the following
results can be easily obtained:

Theorem 3. For planar point sets in convex position of size n ≥ k ≥ 3
we have

k

2π
sin

2π

k
≤ f conv

k (n) ≤ rk(n).

Theorem 4. For every n ≥ 5, we have

1.
1

2− f conv
n−2 (n − 1)

≤ f conv
n−1 (n) ≤ 1−

2(1 − cos 2π
n
)

n
;

2.
1

3− 2f conv
n−3 (n− 2)

≤ f conv
n−2 (n) ≤ 1−

4(1− cos
2π

n
)

n
.

where rn−1(n) = 1−
2(1 − cos

2π

n
)

n
, rn−2(n) = 1−

4(1 − cos
2π

n
)

n
.
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