International Journal of Applied Mathematics

Volume 26 No. 6 2013, 701-712

ISSN: 1311-1728 (printed version); ISSN: 1314-8060 (on-line version) doi: http://dx.doi.org/10.12732/ijam.v26i6.6

MORE ON THE MAXIMUM AREA POLYGONS IN A PLANAR POINT SET

Yatao Du^{1 §}, Hanying Feng², Huixuan Tan³

Department of Mathematics
Shijiazhuang Mechanical Engineering College
Shijiazhuang, 050003, Hebei Province, P.R. CHINA

Abstract: A finite set of points in the plane is described as in convex position if it forms the set of vertices of a convex polygon. Let P be a set of n points in convex position in the plane, this work studies the ratio between the maximum area of convex (n-2)-polygons with vertices in P and the area of the convex hull of P, and the ratio between the maximum area of convex (n-1)-polygons with vertices in P and the area of the convex hull of P respectively.

AMS Subject Classification: 52C10

Key Words: convex position, convex hull, affine transformation

1. Introduction

A finite set of points in the plane is described as in *convex position* if it forms the set of vertices of a convex polygon. Let P be a finite set of points in convex position in the plane, hence any subset of P is also a point set in convex position. Denote the area of the convex hull of $Q \subset P$ by S(Q). For the sake of convenience we may call a subset $Q \subset P$ a polygon if Q forms the vertices of a polygon. Let

Received: December 16, 2013

© 2013 Academic Publications

§Correspondence author

$$f_k(P) =: \max \left\{ \frac{S(Q)}{S(P)} : Q \subset P, |Q| = k, P \text{ is in convex position} \right\},$$

$$f_k^{conv}(n) =: \min\{f_k(P) : |P| = n, P \text{ is in convex position}\}.$$

In 1992, Fleischer et al. [1] showed that in the study of motion-planning problems in robotics by using heuristics, the largest area polygons in a planar point set play an important role. Hosono et al. [2] mainly studied $f_3^{conv}(n)$. Du and Ding studied $f_4^{conv}(n)$ and $f_5^{conv}(n)$ respectively in [3] and [4]. In this work we evaluate $f_{n-1}^{conv}(n)$ and $f_{n-2}^{conv}(n)$.

2. Main Results

Theorem 1.
$$f_{n-1}^{conv}(n) \ge \frac{1}{2 - f_{n-2}^{conv}(n-1)}$$
.

Proof. Let P be a convex n-gon with vertices A_1, A_2, \dots, A_n in clockwise order. Suppose (n-1)-gon $Q = A_1 A_2 \cdots A_{n-1}$ is the one which has the maximum area of all the (n-1)-gons of P. By an affine transformation, assume that $A_1 = (0,0), A_2 = (0,1), A_{n-1} = (1,0), A_{n-2} = (a,b) \ (a>0, b>0)$. See Figure 1.

Let f be the line through A_1 and A_{n-2} , and let f' be the parallel line through A_{n-1} . Similarly, let g be the line through A_2 and A_{n-1} , and let g' be the parallel line through A_1 . For Q has the maximum area of all the (n-1)-gons of P, A_n must lie completely above f' and g'. Denote $B = f' \cap g'$, then $B = (\frac{b}{a+b}, \frac{-b}{a+b})$ and $A_n \in \triangle A_1 B A_{n-1}$, hence P is always contained in the convex n-gon $P_1 = A_1 A_2 \cdots A_{n-1} B$.

Let $\mathbb{T} = \{ \triangle A_i A_{i+1} A_{i+2} | i = 1, 2, \dots, n-1 \}$ (the addition in the subscript is in modulo (n-1)), that is, \mathbb{T} is the set of all the triangles formed by three consecutive vertices of Q. Without loss of generality, let $\triangle A_2 A_3 A_4$ be the triangle of \mathbb{T} which has the minimum area. Hence (n-2)-gon $Q_1 = A_1 A_2 A_4 \cdots A_{n-1}$ is the one which has the maximum area of all the (n-2)-gons of Q.

Suppose $S(\triangle A_2 A_3 A_4) = \alpha$, then $S(Q_1) = S(Q) - \alpha$.

By the definition of $f_{n-2}^{conv}(n-1)$, $\frac{\widetilde{S(Q_1)}}{S(Q)} \ge f_{n-2}^{conv}(n-1)$, that is, $\frac{S(Q)-\alpha}{S(Q)} \ge f_{n-2}^{conv}(n-1)$, thus

$$\frac{\alpha}{S(Q)} \le 1 - f_{n-2}^{conv}(n-1). \tag{1}$$

Let $A_n = (x_0, y_0)$. Since Q has the maximum area of all the (n-1)-gons

$$P_1 = A_1 A_2 \cdots A_{n-1} B$$
 $P_2 = A_1 A_2 \cdots A_{n-1} C$

Figure 1

of P, then

$$S(\triangle A_2 A_3 A_4) \ge S(\triangle A_1 A_{n-1} A_n) \Longrightarrow \alpha \ge \frac{-y_0}{2} \Longrightarrow y_0 \ge -2\alpha.$$

So A_n lies above the horizontal line $h: y = -2\alpha$.

Case 1. Suppose B lies above the line h, then $\frac{b}{a+b} \leq 2\alpha$. Notice that $P \subset P_1$ and so $S(P) \leq S(P_1)$, where $S(P_1) = S(Q) + S(\triangle A_1BA_{n-1}) = S(Q) + \frac{b}{2(a+b)}$. Hence by (1),

$$\frac{S(P)}{S(Q)} \le \frac{S(P_1)}{S(Q)} = 1 + \frac{\frac{b}{2(a+b)}}{S(Q)} \le 1 + \frac{\alpha}{S(Q)} \le 2 - f_{n-2}^{conv}(n-1),$$

$$\frac{S(Q)}{S(P)} \ge \frac{1}{2 - f_{n-2}^{conv}(n-1)} \,.$$

Case 2. Suppose B lies below the line h, then $\frac{b}{a+b} > 2\alpha$. So $S(P) \le S(P_2)$, where $P_2 = A_1A_2\cdots A_{n-1}C$ is a n-gon with $C = g'\cap h$. Since g': y = -x, $h: y = -2\alpha$, $C = (2\alpha, -2\alpha)$, then $S(P_2) = S(Q) + S(\triangle A_1A_{n-1}C) = S(Q) + \alpha$. Hence by (1),

$$\frac{S(P)}{S(Q)} \le \frac{S(P_2)}{S(Q)} = \frac{S(Q) + \alpha}{S(Q)} = 1 + \frac{\alpha}{S(Q)} \le 2 - f_{n-2}^{conv}(n-1),$$
$$\frac{S(Q)}{S(P)} \ge \frac{1}{2 - f_{n-2}^{conv}(n-1)}.$$

From the above argument, we obtain that for any *n*-point set P in convex position we have $f_{n-1}(P) \ge \frac{1}{2 - f_{n-2}^{conv}(n-1)}$ and hence

$$f_{n-1}^{conv}(n) \ge \frac{1}{2 - f_{n-2}^{conv}(n-1)}.$$

Theorem 2.
$$f_{n-2}^{conv}(n) \ge \frac{1}{3 - 2f_{n-2}^{conv}(n-2)}$$
.

Proof. Let P be a convex n-gon with vertices $A_1, A_2, \cdots A_n$ in clockwise order. Suppose (n-2)-gon Q is the one which has the maximum area of all the (n-2)-gons of P. Here the set of vertices of Q is a subset of $\{A_1, A_2, \cdots A_n\}$. We have only two types of (n-2)-gon Q:

Type I: Vertices of Q are non-consecutive in $\{A_1, A_2, \cdots A_n\}$;

Type II: Vertices of Q are consecutive in $\{A_1, A_2, \cdots A_n\}$.

See Figure 2 for two types of Q, where n = 8, and Q's in Figure 2 (a), (b), (c) are of type I, and Q in Figure 2 (d) is of type II. For Q of type I it suffices to prove the theorem for Q as shown in Figure 2 (a).

Assume $Q = A_1A_3A_4A_5A_6A_7$, $P_1 = A_1A_2A_3A_4A_5A_6A_7$, $P_2 = A_1A_3A_4A_5A_6A_7A_8$, then Q is also the one which has the maximum area of all the hexagons of P_1 and of P_2 . By Theorem 1, we have

$$\frac{S(P)}{S(Q)} = \frac{S(P_1) + S(P_2) - S(Q)}{S(Q)} \le 2(2 - f_5^{conv}(6)) - 1 = 3 - 2f_5^{conv}(6).$$

Thus
$$\frac{S(Q)}{S(P)} \ge \frac{1}{3 - 2f_5^{conv}(6)}$$
.

Figure 2

For other values of n the proof is similar, and we can get

$$\frac{S(P)}{S(Q)} = \frac{S(P_1') + S(P_2') - S(Q)}{S(Q)} \le 2\left(2 - f_{n-3}^{conv}(n-2)\right) - 1 = 3 - 2f_{n-3}^{conv}(n-2).$$
Thus $\frac{S(Q)}{S(P)} \ge \frac{1}{3 - 2f_{n-3}^{conv}(n-2)}$.

Now we prove the theorem when Q is of type II, as shown in Figure 2 (d) for n=8 and Figure 3 for all possible values of n. Q is formed by (n-2) consecutive vertices of P. Without loss of generality, let $Q=A_1A_2\cdots A_{n-2}$. Assume (by an affine transformation) that $A_1=(0,0), A_2=(0,1), A_{n-2}=(1,0), A_{n-3}=(a,b)$ (a>0, b>0). See Figure 3.

Let f be the line through A_1 and A_{n-3} , and let f' be the parallel line through A_{n-2} . Similarly, let g be the line through A_2 and A_{n-2} , and let g' be the parallel line through A_1 . Denote $B = f' \cap g'$, then $B = (\frac{b}{a+b}, \frac{-b}{a+b})$. Similar

Figure 3

to the proof of Theorem 1, here $A_{n-1}, A_n \in \triangle A_1 B A_{n-2}$ and P is always contained in the convex (n-1)-gon $P_1 = A_1 A_2 \cdots A_{n-2} B$.

Let $\mathbb{T} = \{ \triangle A_i A_{i+1} A_{i+2} | i = 1, 2, \dots, n-2 \}$ (the addition in the subscript is in modulo (n-2)). Without loss of generality, let $\triangle A_2 A_3 A_4$ be the triangle of \mathbb{T} which has the minimum area. Hence (n-3)-gon $Q_1 = A_1 A_2 A_4 \cdots A_{n-2}$ is the one which has the maximum area of all the (n-3)-gons of Q.

Suppose $S(\triangle A_2 A_3 A_4) = \alpha$, then $S(Q_1) = S(Q) - \alpha$.

Similarly to the proof of Theorem 1, A_{n-1} , A_n lies above the horizontal line $h: y = -2\alpha$, and $\frac{S(Q_1)}{S(Q)} \ge f_{n-3}^{conv}(n-2)$, that is, $\frac{S(Q) - \alpha}{S(Q)} \ge f_{n-3}^{conv}(n-2)$, thus

$$\frac{\alpha}{S(Q)} \le 1 - f_{n-3}^{conv}(n-2). \tag{2}$$

Case 1. Suppose B lies above the line h, then $\frac{b}{a+b} \leq 2\alpha$. By the same argument as in case 1 of Theorem 1, then $\frac{S(P)}{S(Q)} \leq \frac{S(P_1)}{S(Q)} \leq 1 + \frac{\alpha}{S(Q)} \leq 2 - f_{n-3}^{conv}(n-2) < 3 - 2f_{n-3}^{conv}(n-2)$, thus $\frac{S(Q)}{S(P)} > \frac{1}{3 - 2f_{n-3}^{conv}(n-2)}$.

Case 2. Suppose B lies below the line h, then $\frac{b}{a+b} > 2\alpha$. So P must be contained in the n-gon $P_2 = A_1A_2 \cdots A_{n-2}DC$, where $C = g' \cap h$, $D = f' \cap h$ and $C = (2\alpha, -2\alpha)$.

$$S(P_2) = S(Q) + S(A_1 A_{n-2} DC) < S(Q) + 2S(\triangle A_1 C A_{n-2}) = S(Q) + 2\alpha,$$

$$(:: S(\triangle C D A_{n-2}) < S(A_1 D A_{n-2}) = S(A_1 C A_{n-2})).$$

Hence by (2), we get $\frac{S(P)}{S(Q)} \leq \frac{S(P_2)}{S(Q)} < \frac{S(Q)+2\alpha}{S(Q)} = 1+\frac{2\alpha}{S(Q)} \leq 3-2f_{n-3}^{conv}(n-2)$, thus $\frac{S(Q)}{S(P)} \geq \frac{1}{3-2f_{n-3}^{conv}(n-2)}$. From the above argument, we obtain that for any n-point set P in con-

From the above argument, we obtain that for any n-point set P in convex position we have $f_{n-2}(P) \geq \frac{1}{3 - 2f_{n-3}^{conv}(n-2)}$ and hence $f_{n-2}^{conv}(n) \geq \frac{1}{3 - 2f_{n-3}^{conv}(n-2)}$

$$\frac{1}{3 - 2f_{n-3}^{conv}(n-2)}$$
.

Lemma 1. Let P_n be the set of vertices of a regular n-gon, and let $r_k(n) =: f_k(P_n)$, then

$$r_k(n) = \frac{k \sin \frac{2\pi}{k}}{n \sin \frac{2\pi}{n}}$$
 when $n \equiv 0 \mod k$;

$$r_k(n) = \frac{(k-1)\sin\frac{\lfloor\frac{n}{k}\rfloor 2\pi}{n} + \sin\frac{\lceil\frac{n}{k}\rceil 2\pi}{n}}{n\sin\frac{2\pi}{n}} \quad \text{when } n \equiv 1 \mod k;$$

$$r_k(n) = \frac{(k-2)\sin\frac{\lfloor \frac{n}{k}\rfloor 2\pi}{n} + 2\sin\frac{\lceil \frac{n}{k}\rceil 2\pi}{n}}{n\sin\frac{2\pi}{n}} \quad \text{when } n \equiv 2 \mod k;$$

$$r_k(n) = \frac{2\sin\frac{\lfloor\frac{n}{k}\rfloor 2\pi}{n} + (k-2)\sin\frac{\lceil\frac{n}{k}\rceil 2\pi}{n}}{n\sin\frac{2\pi}{n}} \quad \text{when } n \equiv (k-2) \mod k;$$

Figure 4

$$r_k(n) = \frac{\sin\frac{\lfloor \frac{n}{k} \rfloor 2\pi}{n} + (k-1)\sin\frac{\lceil \frac{n}{k} \rceil 2\pi}{n}}{n\sin\frac{2\pi}{n}} \quad \text{when } n \equiv (k-1) \mod k.$$

Proof. Suppose that the maximum area k-gon $P = A_1 A_2 \cdots A_k$ with vertices in P_n divides the boundary of the convex hull of P_n into k chains $A_1 A_2$, $A_2 A_3$, \cdots , $A_{k-1} A_k$ and $A_k A_1$, with $a_1, a_2, \cdots, a_{k-1}$ and a_k edges, respectively, as shown in Figure 4.

For any two of edge numbers a_1, a_2, \dots, a_k , say, a_i and a_j (i < j), the number of edge numbers between them is m = j - i - 1 $(0 \le m \le k - 2)$, we prove that a_i and a_j differ at most by 1 by induction on m.

For m = 0, that is, for any two adjacent edge numbers, the assertion is true. If not, say, for a_1 and a_2 we have $a_1 - a_2 \ge 2$. See Figure 5.

Let B be the nearest point of P_n to A_2 in clockwise order. Observe that since $a_1 - a_2 \ge 2$, the numbers of points of P_n on A_1A_2 is at least two more than that on A_2A_3 . Then $S(\triangle A_1BA_3) > S(\triangle A_1A_2A_3)$, and the area of k-gon $A_1BA_3 \cdots A_k$ is greater than the area of k-gon P, contradicting the choice of P.

$$a_1 = 4, a_2 = 2$$

Figure 5

Suppose the conclusion true for the case when the number of edge numbers between a_i and a_j is less than m, and consider the case when it equals m.

Suppose on the contrary, say, for a_1 and a_{m+2} we have $a_1 - a_{m+2} \ge 2$. Therefore, by the induction hypothesis, we only need to consider the case $a_1 = t$, $a_2 = a_3 = \cdots = a_{m+1} = t - 1$, $a_{m+2} = t - 2$.

Let B_2, B_3, \dots, B_{m+2} be the nearest point of P_n to A_2, A_3, \dots and A_{m+2} in clockwise order, respectively. Then the area of k-gon $A_1B_2B_3\cdots B_{m+2}A_{m+3}\cdots A_k$ is greater than the area of k-gon P, contradicting the choice of P.

For example, let m=3, t=5 and let B_2 , B_3 , B_4 , B_5 be the nearest point of P_n to A_2 , A_3 , A_4 and A_5 in clockwise order, respectively. See Figure 6. Recall that P_n is the set of vertices of a regular n-gon, $B_5A_5//A_4A_6$, so $S(\triangle A_4B_5A_6)=S(\triangle A_4A_5A_6)$, replace A_5 by B_5 in k-gon $A_1A_2\cdots A_k$ and denote the new k-gon by P_1 , $S(P_1)=S(P)$. Similarly, $S(\triangle A_3B_4B_5)=S(\triangle A_3A_4B_5)$, so we can replace A_4 by B_4 in k-gon P_1 and obtain another new k-gon P_2 with $S(P_2)=S(P)$. Replace A_3 by B_3 in k-gon P_2 and we obtain the third new k-gon P_3 with $S(P_3)=S(P)$. At last, we replace A_2 by B_2 in k-gon P_3 and obtain the k-gon $P_4=A_1B_2B_3B_4B_5A_6\cdots A_k$. Obviously $S(\triangle A_1B_3B_2)>S(\triangle A_1B_3A_2)$,

Figure 6

and hence $S(P_4) > S(P_3) = S(P)$, contradicting the choice of P.

Therefore, we conclude that the maximal area k-gon splits the boundary into k chains whose numbers of edges are $\{t, t, \dots, t, t\}, \{t, t, \dots, t, t+1\}, \{t, t, \dots, t+1, t+1\}, \dots, \{t, t+1 \dots, t+1, t+1\}$, when $n \equiv 0, 1, \dots, k-1 \mod k$, respectively. An easy computation can lead to the claimed formulas. \square

Notice that each $r_k(n)$ is a decreasing function. Thus we can deduce that

$$\lim_{n \to \infty} r_k(n) = \frac{k}{2\pi} \sin \frac{2\pi}{k}.$$

Lemma 2. ([5]) Let B be a compact convex body in the plane and B_k be a largest area k-gon inscribed in B. Then $area(B_k) \ge area(B) \frac{k}{2\pi} \sin \frac{2\pi}{k}$, where equality holds if and only if B is an ellipse.

From Theorem 1, Theorem 2, Lemma 1 and Lemma 2, the following results can be easily obtained:

Theorem 3. For planar point sets in convex position of size $n \geq k \geq 3$ we have

$$\frac{k}{2\pi}\sin\frac{2\pi}{k} \le f_k^{conv}(n) \le r_k(n).$$

Theorem 4. For every $n \geq 5$, we have

1.
$$\frac{1}{2 - f_{n-2}^{conv}(n-1)} \le f_{n-1}^{conv}(n) \le 1 - \frac{2(1 - \cos\frac{2\pi}{n})}{n};$$

2.
$$\frac{1}{3 - 2f_{n-3}^{conv}(n-2)} \le f_{n-2}^{conv}(n) \le 1 - \frac{4(1 - \cos\frac{2\pi}{n})}{n}.$$

where
$$r_{n-1}(n) = 1 - \frac{2(1 - \cos\frac{2\pi}{n})}{n}$$
, $r_{n-2}(n) = 1 - \frac{4(1 - \cos\frac{2\pi}{n})}{n}$.

3. Acknowledgments

Supported by HEBNSF of China (Grant No. A2012506010).

References

[1] R. Fleischer, V. Mehlhorn, G. Rote, E. Welzl and C. Yap, Simultaneous inner and outer approximation of shapes, *Algorithmica*, 8 (1992), 365-389.

- [2] K. Hosono, F. Hurtado, M. Urabe and J. Urrutia, On a triangle with the maximum area in a planar point set, In: *Indonesia-Japan Conference in Discrete and Computational Geometry* 2003, **3330** (2005), 102-107.
- [3] Y. Du, R. Ding, On the maximum area pentagon in a planar point set, *Applied Mathematics Letters*, **19** (2006), 1228-1236.
- [4] Y. Du, R. Ding, On maximum area polygons in a planar point set, *Elemente der Mathematik*, **63** (2008), 88-96.
- [5] E. Sàs, On a certain extremum-property of the ellipse (in Hungarian, English summary), *Mat. Fiz. Lapok*, **48** (1941), 533-542.