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1. Introduction

The concept of random Riemann sums is introduced in [2] and [3] in the fol-
lowing manner.

Denote the interval [0, 1) by I and let I be equipped by Borel σ-algebra.
Let m be the Lebesgue measure on I. By a partition P0 of I we mean a finite
sequence, x0, x1, ..., xn of elements of I such that 0 = x0 < x1 < ... < xn = 1.
The norm of P0 with respect to the arbitrary measure µ on I is | P0 |µ:=
max{µ(Ik) : Ik = [xk−1, xk), 1 ≤ k ≤ n}.

For each Ik ∈ P0, let tk ∈ Ik, 1 ≤ k ≤ n, be a random variable with uniform
distribution in the interval (xk−1, xk), tk’s being independent.
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Let f : I −→ R be a Lebesgue integrable function. The random Riemann
sum of f on P0 is

SP0
(f) =

∑

f(tk)m(Ik).

In [3] some results are proved for Lebesge measure m. As an example, Propo-
sition 2.1. of [3], can be mentioned which is equivalent to the following

Theorem 1. For any ǫ > 0, and any sequence of partitions Pn, n ≥ 1, if
limn−→∞ | Pn |m= 0, then

P (| SPn
(f)−

∫

I

fdm |> ǫ) −→ 0.

In this paper the sequence of partitions based on which the random Riemann
sums are defined is randomized.

2. Notations

Throughout the paper we assume a sequence {Pn}n≥1 of partitions of I such
that for each n ≥ 1, Pn, consists of a finite sequence of mutually independent
and distinct r.v.s, each with uniform distribution in I. Moreover Pns, n ≥
1, form a mutually independent sequence of random vectors. We show by
construction that a randomization mechanism which yields the desired random
elements exists.

3. Random Sequence

Lemma 1. There is a probability space (Ω0,B0, P0) on which a random
vector (T1,X1, T2, ...,Xn, Tn+1) can be defined such that X1 < X2 < ... < Xn,

and X1,X2, ...,Xn, are the corresponding ordered statistics of a random sample
from Uniform distribution in I([1]) and given (X1, ...,Xn), Ti’s are independent
and Ti is uniformly distributed on [Xi−1,Xi), 1 ≤ i ≤ n letting X0 = 0 and
Xn+1 = 1.

Proof. We have

f(X1,...,Xn)(x1, ..., xn) =

{

n!, if 0 ≤ x1 < x2 < ... ≤ xn < 1;
0, if otherwise,
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and hence if we take

g = f(T1,X1,T2,...,Xn,Tn+1)(t1, x1, t2, ..., xn, tn+1)

and h = f(X1,...,Xn)(x1, ..., xn), then we have

g = hfT1|X1=x1
(t1)fT2|X2=x2,X3=x3

(t2)...fTn|Xn=xn
(tn),

i.e.

g =

{

n!
x1(x2−x1)...(xn−xn−1)(1−xn)

, if 0 ≤ t1 < x1 ≤ t2 < ... < xn ≤ tn+1 < 1;

0, if otherwise.

Now let (Ω0,B0, P0) be s.t. Ω0 is the set of elements of I2n+1 with distinct
coordinates and B0 the Borel σ-algebra in it. Define for A ∈ B0,

P0(A) =

∫

A∩{0<T1<X1<T2<...<Xn<Tn+1<1}
gdt1dx1dt2....dxndtn+1. �

Lemma 2. Let k1, k2, ... be an increasing sequence of natural numbers.
There is a probability space (Ω,B, P ) for which each realization of an out-
come yields a sequence {An}n≥1, where An, n ≥ 1, is a strictly increasing

sequence like 0 = x0
(n), t

(n)
1 , x

(n)
1 , t

(n)
2 , ..., x

(n)
kn

, t
(n)
kn+1, x

(n)
kn+1 = 1 s.t. for each

n, x
(n)
1 , x

(n)
2 , ..., x

(n)
kn

are the corresponding ordered statistics of a random sam-

ple from uniform distribution in I and for each n, given (x
(n)
1 , x

(n)
2 , ..., x

(n)
kn

), t
(n)
i

s are independent each having uniform distribution in [x
(n)
i−1, x

(n)
i ). Moreover

Ans, n ≥ 1, form a mutually independent sequence of random vectors.

Proof. According to the previous lemma for each n ≥ 1, there is a proba-
bility space (Ωn,Bn, Pn) which yields the random vector

(t
(n)
1 , x

(n)
1 , t

(n)
2 , ..., x

(n)
kn

, t
(n)
kn+1).

Now let (Ω,B, P ) be s.t. Ω = Ω1Ω2 ...Ωn ... and B the Borel σ-algebra in it
and take P = P1 ⊗ P2 ⊗ ...⊗ Pn ⊗ ....

Lemma 3. For the sequence of partitions {Pn}n≥1, if Pn is constituted of

points 0,X
(n)
1 ,X

(n)
2 , ...,X

(n)
kn

, 1, where X
(n)
i ’s and and kjs being as described in

the above lemma, then | Pn | tends to zero with probability 1.
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Proof. It is sufficient to prove that, a.s.,
⋃

n≥1 Pn is dense in I. For fixed
arbitrary sub-interval (a, b) of I, let Gn be the event of the sequence {Pi}i≥1,

having at least one point in (a, b), in the n-th term for the first time. The
assertion will be proved if we show that P (

⋃

n≥1Gn) = 1. We have

P (
⋃

n≥1

Gn) =
∑

n≥1

P (Gn) =
∑

n≥1

(1− (b− a))k1+k2...+kn−1(1− (1− (b− a))kn).

It is clear that the above series tends to one. So
⋃

n≥1Pn is dense in I and the
truth of result is obvious.

For partition {Pn}n≥1, define

Yk = f(t
(n)
k )(x

(n)
k − x

(n)
k−1)|(X

(n)
k = xk,X

(n)
k−1 = xk−1), k ≥ 1,

and SPn
(f) =

∑

Yk. We have

E(f(t
(n)
k )(x

(n)
k − x

(n)
k−1)|(X

(n)
k = xk,X

(n)
k−1 = xk−1)) = E(f(t

(n)
k )(x

(n)
k − x

(n)
k−1))

=

∫

Ik

fdm,

and so

E(SPn
(f)) =

∑

∫

Ik

fdm =

∫

I

fdm.

The main theorem is the following, based on Lemmas 1,2,3 in this paper and
Proposition 2.1. in [3] which is coming, in the sequel.

Theorem 2. Suppose f : I −→ R is a Lebesgue integrable function.
For the sequence of random partitions {Pn}n≥1, if | Pn | tends to zero with
probability 1, when n −→ ∞, we have

P (| SPn
(f)−

∫

I

fdm |> ǫ) < ǫ , forallǫ > 0.

Remark 1. In the same manner, after the same conditions other results
in [3] can be seen to hold naturally.
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