International Journal of Applied Mathematics

Volume 26 No. 6 2013, 695-699

ISSN: 1311-1728 (printed version); ISSN: 1314-8060 (on-line version)

doi: http://dx.doi.org/10.12732/ijam.v26i6.5

A NEW RANDOM APPROACH TO THE LEBESGUE INTEGRAL

Elham Dastranj¹§, Reza Hejazi²
Department of Pure Mathematics
Faculty of Mathematical Sciences
Shahrood University of Technology
P.O. Box: 203-2308889030, Shahrood, IRAN

Abstract: In this paper a new method is given for generating the Lebesgue integral. For the corresponding random Riemann sums it is shown that they converge to the Lebesgue integral in probability.

AMS Subject Classification: 60Hxx, 60Bxx, 60Gxx

Key Words: Lebesgue integral, Riemann sums, random Riemann sums

1. Introduction

The concept of random Riemann sums is introduced in [2] and [3] in the following manner.

Denote the interval [0,1) by I and let I be equipped by Borel σ -algebra. Let m be the Lebesgue measure on I. By a partition \mathcal{P}_0 of I we mean a finite sequence, $x_0, x_1, ..., x_n$ of elements of I such that $0 = x_0 < x_1 < ... < x_n = 1$. The norm of \mathcal{P}_0 with respect to the arbitrary measure μ on I is $|\mathcal{P}_0|_{\mu} := \max\{\mu(I_k) : I_k = [x_{k-1}, x_k), 1 \le k \le n\}$.

For each $I_k \in \mathcal{P}_0$, let $t_k \in I_k$, $1 \le k \le n$, be a random variable with uniform distribution in the interval (x_{k-1}, x_k) , t_k 's being independent.

Received: November 25, 2013

© 2013 Academic Publications

[§]Correspondence author

Let $f: I \longrightarrow \mathbb{R}$ be a Lebesgue integrable function. The random Riemann sum of f on \mathcal{P}_0 is

$$S_{\mathcal{P}_0}(f) = \sum f(t_k)m(I_k).$$

In [3] some results are proved for Lebesge measure m. As an example, Proposition 2.1. of [3], can be mentioned which is equivalent to the following

Theorem 1. For any $\epsilon > 0$, and any sequence of partitions \mathcal{P}_n , $n \geq 1$, if $\lim_{n \to \infty} |\mathcal{P}_n|_{m} = 0$, then

$$P(\mid S_{\mathcal{P}_n}(f) - \int_I f dm \mid > \epsilon) \longrightarrow 0.$$

In this paper the sequence of partitions based on which the random Riemann sums are defined is randomized.

2. Notations

Throughout the paper we assume a sequence $\{\mathcal{P}_n\}_{n\geq 1}$ of partitions of I such that for each $n\geq 1$, \mathcal{P}_n , consists of a finite sequence of mutually independent and distinct r.v.s, each with uniform distribution in I. Moreover \mathcal{P}_n s, $n\geq 1$, form a mutually independent sequence of random vectors. We show by construction that a randomization mechanism which yields the desired random elements exists.

3. Random Sequence

Lemma 1. There is a probability space $(\Omega_0, \mathcal{B}_0, P_0)$ on which a random vector $(T_1, X_1, T_2, ..., X_n, T_{n+1})$ can be defined such that $X_1 < X_2 < ... < X_n$, and $X_1, X_2, ..., X_n$, are the corresponding ordered statistics of a random sample from Uniform distribution in I([1]) and given $(X_1, ..., X_n)$, T_i 's are independent and T_i is uniformly distributed on $[X_{i-1}, X_i), 1 \le i \le n$ letting $X_0 = 0$ and $X_{n+1} = 1$.

Proof. We have

$$f_{(X_1,...,X_n)}(x_1,...,x_n) = \begin{cases} n!, & \text{if } 0 \le x_1 < x_2 < ... \le x_n < 1; \\ 0, & \text{if otherwise,} \end{cases}$$

and hence if we take

$$g = f_{(T_1, X_1, T_2, ..., X_n, T_{n+1})}(t_1, x_1, t_2, ..., x_n, t_{n+1})$$

and $h = f_{(X_1,...,X_n)}(x_1,...,x_n)$, then we have

$$g = h f_{T_1|X_1=x_1}(t_1) f_{T_2|X_2=x_2,X_3=x_3}(t_2) ... f_{T_n|X_n=x_n}(t_n),$$

i.e.

$$g = \begin{cases} \frac{n!}{x_1(x_2 - x_1) \dots (x_n - x_{n-1})(1 - x_n)}, & \text{if } 0 \le t_1 < x_1 \le t_2 < \dots < x_n \le t_{n+1} < 1; \\ 0, & \text{if otherwise.} \end{cases}$$

Now let $(\Omega_0, \mathcal{B}_0, P_0)$ be s.t. Ω_0 is the set of elements of I^{2n+1} with distinct coordinates and \mathcal{B}_0 the Borel σ -algebra in it. Define for $A \in \mathcal{B}_0$,

$$P_0(A) = \int_{A \cap \{0 < T_1 < X_1 < T_2 < \dots < X_n < T_{n+1} < 1\}} g dt_1 dx_1 dt_2 \dots dx_n dt_{n+1}. \qquad \Box$$

Lemma 2. Let $k_1, k_2, ...$ be an increasing sequence of natural numbers. There is a probability space (Ω, \mathbf{B}, P) for which each realization of an outcome yields a sequence $\{A_n\}_{n\geq 1}$, where $A_n, n\geq 1$, is a strictly increasing sequence like $0=x_0^{(n)}, t_1^{(n)}, x_1^{(n)}, t_2^{(n)}, ..., x_{k_n}^{(n)}, t_{k_{n+1}}^{(n)}, x_{k_{n+1}}^{(n)} = 1$ s.t. for each $n, x_1^{(n)}, x_2^{(n)}, ..., x_{k_n}^{(n)}$ are the corresponding ordered statistics of a random sample from uniform distribution in I and for each n, given $(x_1^{(n)}, x_2^{(n)}, ..., x_{k_n}^{(n)}), t_i^{(n)}$ s are independent each having uniform distribution in $[x_{i-1}^{(n)}, x_i^{(n)})$. Moreover $A_n s, n \geq 1$, form a mutually independent sequence of random vectors.

Proof. According to the previous lemma for each $n \geq 1$, there is a probability space $(\Omega_n, \mathbf{B}_n, P_n)$ which yields the random vector

$$(t_1^{(n)}, x_1^{(n)}, t_2^{(n)}, ..., x_{k_n}^{(n)}, t_{k_n+1}^{(n)}).$$

Now let (Ω, \mathbf{B}, P) be s.t. $\Omega = \Omega_1 \Omega_2 ... \Omega_n ...$ and \mathbf{B} the Borel σ -algebra in it and take $P = P_1 \otimes P_2 \otimes ... \otimes P_n \otimes ...$

Lemma 3. For the sequence of partitions $\{\mathcal{P}_n\}_{n\geq 1}$, if \mathcal{P}_n is constituted of points $0, X_1^{(n)}, X_2^{(n)}, ..., X_{k_n}^{(n)}, 1$, where $X_i^{(n)}$'s and and k_j s being as described in the above lemma, then $|\mathcal{P}_n|$ tends to zero with probability 1.

Proof. It is sufficient to prove that, a.s., $\bigcup_{n\geq 1} \mathcal{P}_n$ is dense in I. For fixed arbitrary sub-interval (a,b) of I, let G_n be the event of the sequence $\{\mathcal{P}_i\}_{i\geq 1}$, having at least one point in (a,b), in the n-th term for the first time. The assertion will be proved if we show that $P(\bigcup_{n\geq 1} G_n)=1$. We have

$$P(\bigcup_{n>1} G_n) = \sum_{n>1} P(G_n) = \sum_{n>1} (1 - (b-a))^{k_1 + k_2 \dots + k_{n-1}} (1 - (1 - (b-a))^{k_n}).$$

It is clear that the above series tends to one. So $\bigcup_{n\geq 1} \mathcal{P}_n$ is dense in I and the truth of result is obvious.

For partition $\{\mathcal{P}_n\}_{n\geq 1}$, define

$$Y_k = f(t_k^{(n)})(x_k^{(n)} - x_{k-1}^{(n)})|(X_k^{(n)} = x_k, X_{k-1}^{(n)} = x_{k-1}), \ k \ge 1,$$

and $S_{\mathcal{P}_n}(f) = \sum Y_k$. We have

$$E(f(t_k^{(n)})(x_k^{(n)} - x_{k-1}^{(n)})|(X_k^{(n)} = x_k, X_{k-1}^{(n)} = x_{k-1})) = E(f(t_k^{(n)})(x_k^{(n)} - x_{k-1}^{(n)}))$$

$$= \int_{I_k} f dm,$$

and so

$$E(S_{\mathcal{P}_n}(f)) = \sum \int_{I_k} f dm = \int_I f dm.$$

The main theorem is the following, based on Lemmas 1,2,3 in this paper and Proposition 2.1. in [3] which is coming, in the sequel.

Theorem 2. Suppose $f: I \longrightarrow \mathbb{R}$ is a Lebesgue integrable function. For the sequence of random partitions $\{\mathcal{P}_n\}_{n\geq 1}$, if $|\mathcal{P}_n|$ tends to zero with probability 1, when $n \longrightarrow \infty$, we have

$$P(\mid S_{\mathcal{P}_n}(f) - \int_I f dm \mid > \epsilon) < \epsilon , for all \epsilon > 0.$$

Remark 1. In the same manner, after the same conditions other results in [3] can be seen to hold naturally.

References

[1] G. Casella and R. Berger, Statistical Inference, Wads Worth (1990).

- [2] J.C. Kieffer and C.V. Stanojevic, The Lebesgue integral as the almost sure limit of random Riemann sums, *Proc. Amer. Math. Soc.*, **85**, No 3 (1982), 389-392.
- [3] J. Grahl, A random approach to the Lebesgue integral, J. Math. Anal. Appl., 340 (2008), 358-365.