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Abstract: The aim of this paper is by using the fractional complex transform
and the optimal homotopy analysis by method (OHAM) to find the analyt-
ical approximate solutions for time-space nonlinear partial fractional Newell-
Whitehead equations. Fractional complex transformation is proposed to convert
time-space nonlinear partial fractional differential Newell-Whitehead equation
to nonlinear partial differential equations. Also, we use the optimal homotopy
analysis method (OHAM) to the obtained nonlinear PFDEs. This optimal ap-
proach has general meaning and can be used to get the fast convergent series
solution of the different type of nonlinear partial fractional differential equa-
tions. The results reveal that this method is very effective and powerful to
obtain the approximate solutions.
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1. Introduction

The transform method is an important method to solve mathematical prob-
lems. Many useful transforms for solving various problems appeared in the
literature, such as the traveling wave transform, the Laplace transform, the
Fourier transform, other classical integral transforms, and the local fractional
integral transforms (see [3]). Recently, it was suggested to convert fractional
order differential equations with local fractional derivative, and the resultant
equations can be solved by some advanced calculus [5]. The fractional complex
transform was first proposed in Refs. [6] and [7].

Our objective is to obtain analytical solutions of the following time and
space fractional derivatives nonlinear differential equations by Fractional Com-
plex Transform (FCT) with the help of OHAM, and to determine the effective-
ness of FCT in solving these kinds of problems.

The time and space fractional derivatives Newell-Whitehead equation (see
[14] and [11]) is:

Dα
t u−D2β

x u− u+ u3 = 0, (1)

where α and β are the parameters standing for the order of the fractional time
and space derivatives, respectively, and satisfying 0 < α, β ≤ 1, and x > 0.

2. Preliminaries and Notations

In this section, we mention some basic definitions of fractional calculus theory
which can be used further in this work. Local fractional derivative to f(x) order
α in interval [a, b] is defined by [13] and [2]:

Dαf(x0) =
dαf

dxα
|x=x0

= lim
x−→x0

∆α(f(x)− f(x0))

(x− x0)α
, (2)

where ∆α(f(x)− f(x0)) = Γ(α+ 1)∆(f(x)− f(x0)).
Also, the inverse of local fractional derivative to of f(x) order α in interval

[a,b] is defined by [2] and [15] as follows:

aI
α
b f(x) =

1

Γ(α+ 1)

b
∫

a

f(t)(dt)α =
1

Γ(α+ 1)
lim

∆t−→0

N−1
∑

j=0

f(tj)(∆tj)
α, (3)

where ∆tj = tj−1 − tj , ∆t = max{∆t1,∆t2, ....} , j = 0, 1, ...., N − 1, t0 =
a, tN = b are the partition of the interval [a, b].
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3. The Optimal Homotopy Analysis Method (OHAM)

For more clarifications about the basic ideas of the OHAM for nonlinear partial
differential equations, it is better to see the following nonlinear partial differ-
ential equation:

N [u(x, t)] = 0, (4)

where N is a nonlinear operator for this problem, x and t denotes the indepen-
dent variables, and u(x, t) is an unknown function:

By using the HAM, we first construct zero-order deformation equation

(1− q)L(φ(x, t; q)− u0(x, t)) = qhH(t)N [ φ(x, t, q)], (5)

where q ∈ [0, 1] is the embedding parameter, h 6= 0 is an auxiliary parameter,
H(t) 6= 0 is an auxiliary function, L is an auxiliary linear operator, u0(x, t) is
an initial guess, at q = 0 and q = 1, we have

φ(x, t; 0) = u0(x, t), φ(x, t; 1) = u(x, t). (6)

By considering a Taylor series expression of φ(x, t, q) with respect to q in the
form

φ(x, t; q) = u0(x, t) +
∞
∑

m=1

um(x, t)qm, (7)

where

um(x, t) =
1

m!

∂mφ(x, t; q)

∂qm
|q=0, (8)

the initial guess, the auxiliary parameter h and the auxiliary function H(t) are
selected such that the series (7) is convergent at q = 1, then we have from (7)

u(x, t) = u0(x, t) +

∞
∑

m=1

um(x, t). (9)

We give the definition of the vector

u→n (t) = {u0(x, t), u1(x, t), u2(x, t), ....., un(x, t)}. (10)

Differentiating (5) m times with respect to q, then setting q = 0 and dividing
then by m!, we have the mth-order deformation equation

L(um(x, t)− κmum−1(x, t)) = hH(t)Rm(u→m−1), (11)
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where

Rm(u→m−1) =
1

(m− 1)!

∂m−1N [φ(x, t; q)]

∂qm−1
|q=0, (12)

and

κm =

{

0 m ≤ 1,
1 m > 1.

(13)

Applying the integral operator on both sides of (11), we get

um(x, t) = κmum−1(x, t) + h

t
∫

0

H(t)Rm(u→m−1)dt, (14)

the mth- order deformation Eq. (11) is linear and thus can be easily solved,
especially by means of symbolic computation software such as Mathematica.

S.J. Liao [8], Yabushita et al. [9] and Mohamed S. Mohamed et al. [10]
and [4], suggested the so-called optimization method to find out the optimal
convergence control parameters by minimum of the square residual error inte-
grated in the whole region having physical meaning. Their method depends
on the square residual error. Let △(h) denote the square residual error of the
governing equation (4) and express as

△(h) =

∫

Ω
(N [

∼
un(t)])

2dΩ, (15)

where
∼
um(t) = u0(t) +

m
∑

k=1

uk(t), (16)

the optimal value of h is given by a nonlinear algebraic equation as:

d△(h)

dh
= 0. (17)

4. The Fractional Complex Transform

The following nonlinear partial fractional differential equation is given

f(u, u
(α)
t , u(β)x , u(γ)y , u(λ)z , u

(2α)
t , u(2β)x , u(2γ)y , u(2λ)z , ...) = 0, 0 < α, β, γ , λ ≤ 1.

(18)
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where

u
(α)
t =

∂αu(x, y, z, t)

∂tα
, u(β)x =

∂βu(x, y, z, t)

∂xβ
,

u(γ)y =
∂γu(x, y, z, t)

∂yγ
, u(λ)z =

∂λu(x, y, z, t)

∂zλ

denote the local fractional derivatives with respect to t, x, y, z, respectively. The
fractional complex transform requires that

T =
wtα

Γ(1 + α)
,X =

pxβ

Γ(1 + β)
, Y =

kyγ

Γ(1 + γ)
, Z =

lzλ

Γ(1 + λ)
, (19)

where w, p, k, and l are unknown constants. Using the basic properties of the
fractional derivative and the above transforms, we can convert the fractional
derivatives into the following classical partial derivatives:

∂αu

∂tα
= w

∂u

∂T
,
∂βu

∂xβ
= p

∂u

∂X
,
∂γu

∂yγ
= k

∂u

∂Y
,
∂λu

∂tλ
= l

∂u

∂Z
.

Therefore, we can easily convert the nonlinear partial fractional differential
equations into nonlinear partial differential equations which can be solved by
using the optimal homotopy analysis.

5. Applications

To mention the rate of force of this method, we use the complex transformations
and the optimal homotopy analysis to find the approximate series solutions of
the following the time-space fractional Newell-Whitehead equation of the form:

Dα
t u−D2β

x u− u+ u3 = 0, (20)

where 0 < α, β ≤ 1 is a parameter describing the order of the fractional time
derivative. The exact solution to Eq. (20) at α = β = 1 and subject to the
initial condition

u(x, 0) =
sinh( x√

2
)

1 + cosh( x√
2
)
, (21)

was derived in [14] and is given as:

u(x, t) =
e

x√
2 − e

−x√
2

e
x√
2 + e

−x√
2 + 2e−

3t
2

. (22)
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To apply FCT to eq. (20), we use the above transformations, so we have the
following partial differential equation:

w
∂u

∂T
− p2

∂2u

∂x2
− u+ u3 = 0. (23)

Thus we get
∂u

∂T
+

1

w
(−p2

∂2u

∂X2
− u+ u3) = 0. (24)

Now, we solve eq. (24) using the OHAM, choosing the linear operator

L[φ(X,T ; q)] =
∂φ(X,T ; q)

∂T
, (25)

with property L[c] = 0, where c is a constant. We define a nonlinear operator
as

N [φ(X,T ; q)] =
∂φ(X,T ; q)

∂T
+

1

w
(−p2

∂φ2(X,T ; q)

∂X2
− φ(X,T ; q) + φ3(X,T ; q)).

(26)
We construct the zeroth-order deformation equation

(1− q)L(φ(X,T ; q) − u0) = qhH(t)N [φ(X,T ; q)].

For q = 0 and q = 1, we can write

φ(X,T ; 0) =u0 = u(X, 0),

φ(X,T ; 1) =u(X,T ).
(27)

Thus, we obtain the mth- order deformation equations

L(um(X,T )− κmum−1(X,T )) = hH(t)Rm(u→m−1), (28)

where

Rm(u→m−1) =
∂um−1

∂T
+

1

w
(−p2

∂2um−1

∂X2
− um−1 +

m−1
∑

i=0

i
∑

j=0

uiui−j
um−1−i).

The auxiliary function can be determined uniquely when H(t) = 1. Now the
solution of the mth-order deformation equations (28) for m ≥ 1 become

um(x, t) =κmum−1(x, t) + hL−1Rm(u→m−1)

=κmum−1(x, t) + h

T
∫

0

Rm(u→m−1)dT,

T =
tα

Γ(1 + α)
and X =

xβ

Γ(1 + β)
.

(29)
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For simplicity we set w = 1, and p = 1 with the subject initial condition

u(x, 0) =
sinh( x√

2
)

1 + cosh( x√
2
)
, (30)

u (x, t) =Tanh[
xβ

2
√
2Γ(1 + β)

]

−
3h(2 + h)(2 + h(2 + h))tαSech[ xβ

2
√
2Γ(1+β)

]2Tanh[ xβ

2
√
2Γ(1+β)

]

4Γ(1 + α)

−
9h2(6 + h(8 + 3h)t2αSech[ xβ

2
√
2Γ(1+β)

]2Tanh[ xβ

2
√
2Γ(1+β)

]3)

16Γ(1 + α)2

− 27h4tα

2048Γ(1 + α)4

(3− 20Cosh[
xβ√

2Γ(1 + β)
] + Cosh[

√
2xβ√

2Γ(1 + β)
]Sech[

xβ

2
√
2Γ(1 + β)

]6

Tanh[
xβ

2
√
2Γ(1 + β)

]3) +
t3α

Γ(1 + α)3
(
−9

512
h3(4 + 3h)Sech[

xβ

2
√
2Γ(1 + β)

]7

(−9Sinh[
3xβ

2
√
2Γ(1 + β)

] + Sinh[
5xβ

2
√
2Γ(1 + β)

])) (31)

− t3α

Γ(1 + α)3
(
63

256
h3(4 + 3h)

Sech[
xβ

2
√
2Γ(1 + β)

]6Tanh[
xβ

2
√
2Γ(1 + β)

]) + ...

When h = −1, α = 1, and β = 1 we obtain the same solution as the solution
obtained by [14] and [11]. According to the h-curves, it is easy to discover
the valid region of h. We used 5-terms in evaluating the approximate solution
u (x, t) =

∑4
i=0 ui(x, t). Note that the solution series contains the auxiliary

parameter h which provides us with a simple way to adjust and control the
convergence of the solution series. Therefore, it is straightforward to choose
an appropriate range for h which ensure the convergence of the solution series.
We stretch the h-curve of u

′′
(1, 1)) in Figure 5.1, which shows that the solution

series is convergent when −0.8 ≤ h ≤ 0.5.

As mentioned in Section 3, the optimal value of h is determined by the
minimum of d△4, corresponding to the nonlinear algebraic equation d△4

dh
=
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Figure 5.1: The h-curve of u′′(1, 1) at the 5-th order of approxima-
tion, when H(x, t) = 1, α = β = 1

0, our calculations showed that, d△4
dh

has its minimum value at h |optimal=
−0.688674.

Figure 5.2: (a) Exact solution; (b) HAM solution with h = −0.6887,
α = β = 1

Figures 5.4–5.8: The exact solution (22) is compared with the approximate
solution (31) at h = −0.688674, and x = 1 for different values of α and β.

Also the optimal values of h for different parameters are mentioned in Table
5.1.

In summary, from Figures 5.1–5.8, we deduce the behavior of the approx-
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Figure 5.3: (a) HAM solution with β = 1, h = −0.688674, α = 0.05;
(b) HAM solution with α = 0.5

Figure 5.4: (a) HAM solution with h = −0.688674, α = β = 0.5; (b)
HAM solution with α = β = 0.095

n w p Optimal value of h Minimum value

5 1 1.0 -0.6887 0.000030

4 1 0.5 -0.5000 0.000800

3 -1 -0.5 -0.5000 0.000007

2 -1 0.5 -0.5000 0.000300

Table 5.1: The approximate solutions of (31) when α = β = 1 and
x = 0.2 at the Optimal h.

imate solutions is the same behavior of the exact solution at some different
values α and β. Consequently, we deduce that the approximate solution is
rapidly convergent series as the exact solutions. The approximations given
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Figure 5.5: The residual of the 5-th order approximation for h =
−0.688674

Figure 5.6: Square resifual error for the 5-th order approximation
for h = −0.688674, x = 0.2, t = 0.2, and α = β = 1

by an OHAM converge much faster than the normal HAM in general. The
example considered in this paper suggests that the OHAMs with one or two
convergence-control parameters are computationally most efficient and can give
accurate enough approximations.
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Figure 5.7

Figure 5.8: The exact solution (22) is compared with the approxi-
mate solution (31) at h = −0.688674 and x = 1 for different values
of α and β. Also the optimal values of h for different parameters are
mentioned in Table 5.1

6. Conclusions

In this paper, the fractional complex transform is very simple and the use of
this method does not need the knowledge of fractional calculus. The optimal
homotopy analysis method has been successfully applied for solving nonlin-
ear fractional Newell-Whitehead equation. The results obtained by using the
OHAM presented here agree well with the results obtained by [14] and [11].
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The results show that OHAM is powerful mathematical tool for solving non-
linear fractional differential equations having wide applications in engineering.
Mathematica has been used for computations in this paper.
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