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Abstract: In this paper we show that the Cauchy problem

{
ut +H(y)∂2

xu+ upux = 0, p ∈ N,

u(0) = φ(x, y)

is locally well-posed in the Sobolev space Hs(R2), for s > 2 and that as in the
case of the BO (Benjamin-Ono) equation, there is a lack of persistence in Xs.
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1. Introduction

The purpose of this paper is to show that the Cauchy problem for

ut +H(y)∂2
xu+ upux = 0, (1)

is locally well-posed in the Sobolev space Hs(R2), for s > 2. Observe that (1)
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is a modification of the Benjamin-Ono equation

∂tu+H(x)∂2
xu+ u∂xu = 0, (2)

which describes certain models in physics related to wave propagation in a
stratified thin regions (see [3]). This last equation shares with the KdV equation

ut + ux + uux + uxxx = 0 (3)

many interesting properties. For example, both equations possess infinite con-
servation laws, they have solitary waves as solutions which are stable and behave
like soliton (this last is evidenced by the existence of multisoliton type solutions)
(see [2] and [13]). Also, the local and global well-posedness were proven in the
Sobolev spaces context (in low regularity spaces inclusive, see, e.g., [7], [14],
[11], [12] and [15]).

The plan of this paper is the following: In Section 2, we present the basic
notations and results that are needed. In Section 3, we examine the local well-
posedness in Hs and Section 4, using some ideas from [10], we show that there
is not persistence of 1 in Xs.

The main tool that we use is the abstract theory developed by Kato in [8]
to prove the local well-posedness of quasi-linear equations of evolution. Kato
considered the problem

∂tu+A(t, u)u = f(t, u) ∈ X, 0 < t,

u(0) = u0 ∈ Y,
(4)

in a Banach space X with initial data in a dense subspace Y of X, where A is a
map from R×X into the linear operators of X with dense domain and f(t, u)
is a function from R× Y to X, which satisfy the following conditions:

(X) There exists an isometric isomorphism S from Y to X.
There exists T0 > 0 and W a open ball with center w0 such that:

(A1) For each (t, y) ∈ [0, T0] × W , the linear operator A(t, y) belongs to
G(X, 1, β), where β is a positive real number. In other words, −A(t, y) generates
a C0 semigroup such that

‖e−sA(t,y)‖B(X) ≤ eβs, s ∈ [0,∞).

It should be noted that if X is a Hilbert space, A ∈ G(X, 1, β) if and only if,

a) 〈Ay, y〉X ≥ −β‖y‖2X for all y ∈ D(A),

b) (A+ λ) is onto for all λ > β.
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(A2) For all (t, y) ∈ [0, T0]×W the operator

B(t, y) = [S,A(t, y)]S−1 ∈ B(X)

and is uniformly bounded, i.e., there exists λ1 > 0 such that

‖B(t, y)‖B(X) ≤ λ1 for all (t, y) ∈ [0, T0]×W.

In addition, for some µ1 > 0, for all y and z ∈ W ,

‖B(t, y)−B(t, z)‖B(X) ≤ µ1‖y − z‖Y .

(A3) Y ⊆ D(A(t, y)), for each (t, y) ∈ [0, T0]×W, (the restriction of A(t, y)
to Y belonging to B(Y,X)) and, for each fixed y ∈ W , t → A(t, y) is strongly
continuous. Furthermore, for each fixed t ∈ [0, T0], it is satisfied the following
Lipschitz condition:

‖A(t, y) −A(t, z)‖B(Y,X) ≤ µ2‖y − z‖X ,

where µ2 ≥ 0 is a constant.
(A4) A(t, y)w0 ∈ Y for all (t, y) ∈ [0, T ] ×W . Also, there exists a constant

λ2 such that

‖A(t, y)w0‖Y ≤ λ2, for all (t, y) ∈ [0, T0]×W.

(f1) f is a bounded function from [0, T0]×W in Y , i.e., there exists λ3 such
that

‖f(t, y)‖Y ≤ λ3, for all (t, y) ∈ [0, T0]×W,

Besides, the function t ∈ [0, T0] 7→ f(t, y) ∈ Y is continuous with respect to X

topology and, for all y and z ∈ Y , we have that

‖f(t, y)− f(t, z)‖X ≤ µ3‖y − z‖X ,

when µ3 ≥ 0 is a constant.

Theorem 1 (Kato). Suppose that the conditions (X), (A1)− (A4) y (f1)
are satisfied. For u0 ∈ Y , there exist 0 < T < T0 and a unique u ∈ C([0, T ];Y )∩
C1((0, T );X) solution to (4). Besides, the map u0 → u is continuous in the
following sense: consider the following sequence of Cauchy problems,

∂tun +An(t, un)un = fn(t, un) t > 0

un(0) = un0 n ∈ N.
(5)
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Assume that conditions (X), (A1)–(A4) and (f1) hold for all n ≥ 0 in (5), with
the same X, Y and S, and the corresponding β, λ1–λ3, µ2–µ3 can be chosen
independently from n. Also assume that

s- lim
n→∞

An(t, w) = A(t, w) in B(X,Y )

s- lim
n→∞

Bn(t, w) = B(t, w) in B(X)

lim
n→∞

fn(t, w) = f(t, w) in Y

lim
n→∞

un0 = u0 in Y,

where s-lim denotes the strong limit. Then, T can be chosen in such a way that
un ∈ C([0, T ], Y ) ∩ C1((0, T ),X) and

lim
n→∞

sup
[0,T ]

‖un(t)− u(t)‖Y = 0.

A proof of this theorem can be seen in [8].

2. Preliminaries

The following notations will be used through this paper.

1. S(R2) is the Schwartz space.

2. S ′(R2) is the space of tempered distributions.

3. For f ∈ S ′(R2), f̂ is the Fourier transform of f and f̌ is the inverse Fourier
transform of f . We recall that

f̂(ξ, η) =
1

2π

∫

R2

f(x, y)e−i(xξ+yη)dxdy,

for all (ξ, η) ∈ R2, when f ∈ S(R2).

4. H(y) is the Hilbert transform with respect to the variable y. If f ∈ S(R2),

H(y)f(x, y) =

√
2

π

(
p.v.

∫ ∞

−∞

1

ξ − y
f(x, ξ) dξ

)
.

5. For s ∈ R, Hs = Hs(R2) is the Sobolev space of order s.
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6. The inner product in Hs is denoted as

〈f, g〉s =

∫

R2

(1 + ξ2 + η2)sf̂(ξ, η)ĝ(ξ, η)dξdη.

7. Λs = (1−∆)s/2.

8. If X,Y are Banach spaces, B(X,Y ) is the space of all continuous linear
operators endowed with the norm:

‖T‖B(X,Y ) = sup
‖x‖=1

‖Tx‖.

If X = Y we simply write B(X).

9. [A,B] will denote the commutator of A and B.

10. Xs = Hs(R2)∩L2(1+ y2) where L2(1+ y2) is the space of all real valued
measurable functions such that

‖f‖L2(1+y2) =

(∫
f2(x, y)(1 + y2)

) 1
2

dxdy < ∞.

Xs is a Hilbert space when provided with the inner product:

(f, g)Xs = (f, g)s + (f, g)L2(1+y2).

The following result about commutators of operators due to Kato is a part
of the important stock of tools that are used in the analysis (its proof can be
found in [9]).

Proposition 2 (Kato’s inequality). Let f ∈ Hs, s > 2, Λ = (1 −∆2)1/2

and Mf be the multiplication operator by f . Then, for |t̃|, |s̃| ≤ s − 1,

Λ−s̃[Λs̃+t̃+1,Mf ]Λ
−t̃ ∈ B(L2(R2)) and

∥∥∥Λ−s̃[Λs̃+t̃+1,Mf ]Λ
−t̃
∥∥∥
B(L2(R2))

≤ c‖∇f‖Hs−1 . (6)
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2. Local Theory in Sobolev Spaces

In this section, we prove that the Cauchy problem

{
ut +H(y)∂2

xu+ upux = 0, p ∈ N

u(0) = φ(x, y)
(7)

is locally well-posed in the Sobolev space Hs(R2), for s > 2.

Theorem 3. Let s > 2 and p ∈ N. For φ ∈ Hs(R2), there exist T > 0, that
depends only on ‖φ‖s, and a unique u belonging to C([0, T ],Hs(R2))∩C1([0, T ],
Hs−2(R2)) as solution to the Cauchy problem

{
ut +H(y)∂2

xu+ upux = 0

u(0) = φ
. (8)

Furthermore, the map φ 7→ u from Hs to C([0, T ],Hs) is continuous.

Proof. It is clear that u is a solution to (8) if and only if v(t) = Q(t)u(t) is
solution to 




dv

dt
+A(t, v)v = 0

v(0) = φ

, (9)

where Q(t) = etH
(y)∂xx and

A(t, v) = Q(t)(Q(−t)v)p∂xQ(−t).

Let us see for this problem that each one of the conditions of Kato’s theorem
(Theorem 1) is satisfied. For the moment, let X = L2(R2) and Y = Hs(R2),
for s > 2. It is clear that S = (1 −∆)

s

2 is an isomorphism between X and Y .
In the following lemmas we verify that the problem (9) satisfies the conditions
(A1)–(A4) of Theorem 1.

Lemma 4. A(t, v) ∈ G(X, 1, β(v)), where

β(v) =
1

2
sup
t

‖∂x(Q(t)v)p‖L∞(R2)

(see the condition (A1) before Theorem 1).
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Proof. Since {Q(−t)} is a strongly continuous group of unitary operators,
and thanks to the observation immediately below of the condition (A1) of The-
orem 1, it follows the lemma.

Lemma 5. If S = (1−∆)s/2, then

SA(t, v)S−1 = A(t, v) +B(t, v),

where B(t, v) is a bounded operator in L2, for all t ∈ R and v ∈ Hs, and
satisfies the inequalities

‖B(t, v)‖B(X) ≤ λ(v) (10)

‖B(t, v)−B(t, v′)‖B(X) ≤ µ(v, v′)‖v′ − v‖s, (11)

for all t ∈ R, and every v and v′ ∈ Hs, where

λ(v) = sup
t

Cs‖∇(Q(−t)v)p‖s−1

and µ(v, v′) = Cp,s(‖v‖
p−1
s + ‖v′‖p−1

s ).

Proof. From Proposition 2 it follows that [S, (Q(−t)v)p]∂xS
−1 ∈ B(X) and

‖[S, (Q(−t)v)p]∂xS
−1‖B(X) ≤ Cs‖∇(Q(−t)v)p‖s−1.

Therefore, B(t, v) ∈ B(X) and it satisfies (10).
Proceeding as above and taking into account that

‖vp − wp‖s ≤ Cp,s(‖u‖
p−1
s + ‖v‖p−1

s )‖u− v‖s, (12)

for all u and v ∈ Hs, we can show (11).

Lemma 6. Hs(R2) ⊂ D(A(t, v)) and A(t, v) is a bounded operator from
Y = Hs(R2) to X = L2(R2) with

‖A(t, v)‖B(X,Y ) ≤ λ(v),

for all v ∈ Y , and where λ is as in Lemma 5. Also, the function t 7→ A(t, v) is
strongly continuous from R to B(Y,X), for all v ∈ Hs. Moreover, the function
v 7→ A(t, v) satisfies the following Lipschitz condition

‖A(t, v) −A(t, v′)‖B(Y,X) ≤ µ(v, v′)‖v − v′‖X ,

where µ is as in the lemma above.
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Proof. In view of the fact that Q(−t) = (etH
(y)∂xx)−1 is an unitary operator

in X = L2(R2), from the definition of A(t, v), it follows Hs(R2) ⊂ D(A(t, v)).
In fact,

‖A(t, v)f‖0 = ‖Q(−t)v)p∂xQ(t)f‖0

≤ Cs‖(Q(−t)v)p‖s‖∂xf‖0 ≤ λ(v)‖f‖s, (13)

for all f ∈ Y .
Now, for all t, t′ ∈ R and all f, v ∈ Y , we have

‖A(t, v)f −A(t′, v)f‖0 ≤
∥∥(Q(t)−Q(t′)

)
(Q(−t)v)p∂x(Q(t)f)

∥∥
0

+
∥∥(Q(−t)v)p − (Q(−t′)v)p

)
∂x(Q(t)f)

∥∥
0

+ ‖(Q(−t′)v)p∂x(Q(t)−Q(t′))f‖0.

Since the group {Q(−t)}t∈R is strongly continuous and the function v → vp from
Y itself is continuous, t 7→ A(t, v) is strongly continuous from R to B(Y,X).

Finally, for any t ∈ R we have

‖A(t, v′)f −A(t, v)f‖0 ≤ ‖(Q(t)v′)p − (Q(t)v)p‖0‖∂xQ(t)f‖∞

≤ Cp(‖(Q(t)v)p−1‖∞

+ ‖(Q(t)v′)p−1‖∞)‖f‖s‖v
′ − v‖0

≤ µ(v, v′)‖v′ − v‖0‖f‖s.

This completes the proof of the lemma.

The preceding lemmas show that the problem (9) satisfies the conditions of
Theorem 1 and, therefore, for each φ ∈ Hs, s > 2, there exists T > 0, which
depends on ‖φ‖s, and an unique v ∈ C([0, T ],Hs(R2)

⋂
C1([0, T ], Hs−1(R2))

solution to problem (9). Also, the map φ 7→ v is continuous from Hs(R2) to
C([0, T ], Hs(R2). Now, from the properties of group Q(−t) it can be verified
that u(t) = Q(−t)v(t) is solution to (8) and satisfies the properties enunciated
in Theorem 3.

Theorem 7. The time of existence of the solution to (8) can be chosen
independently from s in the following sense: if u ∈ C([0, T ],Hs) is the solution
to (8) with u(0) = φ ∈ Hr, for some r > s, then u ∈ C([0, T ],Hr). In particular,
if φ ∈ H∞, u ∈ C([0, T ],H∞).

Proof. The proof of this result is essentially the same as part (c) of Theorem
1 in [9]. We will briefly outline this. Let r > s, u ∈ C([0, T ],Hs) be the solution
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to (8) and v = Q(t)u. Let us suppose that r ≤ s+1. Applying ∂2
x in both sides

of the differential equation in (9), we arrive at the following linear evolution
equation in w(t) = ∂2

xv(t),

dw

dt
+A(t)w +B(t)w = f(t), (14)

where

A(t) = ∂xQ(t)(u(t))pQ(−t) (15)

B(t) = 2Q(t)[p(u(t))p−1]ux(t)Q(−t) (16)

f(t) = −Q(t)[p(p − 1)up−2(t)][ux(t)]
3. (17)

Since v ∈ C([0, T ),Hs) we have that w ∈ C([0, T );Hs−2). Also, w(0) =
φxx ∈ Hr−2, because φ ∈ Hr. Let us prove that w ∈ C([0, T ],Hr−2). To do
this, we shall prove that the Cauchy problem associated to the linear equation
lineal (14) is well-posed for 1 − s ≤ k ≤ s − 1. In this direction, we have the
following lemma whose proof is completely similar to that of Lemma 3.1 in
[9].

Lemma 8. The family {A(t)}0≤t≤T has an unique family of evolution
operators U(t, τ)0≤t≤τ≤T in the spaces X = Hh, Y = Hk (in the Kato sense),
where

−s ≤ h ≤ s− 2 1− s ≤ k ≤ s− 1 k + 1 ≤ h. (18)

In particular, U(t, τ) : Hr → Hr for −s ≤ r ≤ s− 1.

Then, the last lemma allows us to show that w satisfies the equation

w(t) = U(t, 0)φxx +

∫ t

0
U(t, τ)[−B(τ)w(τ) + f(τ)]dτ. (19)

Now, since w(0) = φxx ∈ Hr−2, by (17), f is in C([0, T ],Hs−1) ⊂ C([0, T ],Hr−2)
(if r ≤ s+ 1) and B(t), given in (16), is a family of operators in B(Hr−2)
strongly continuous for t in the interval [0, T ] (if r ≤ s+1), from Lemma 8, the
solution to (19) is in C([0, T ],Hr−2) ((19) is an integral equation of Volterra
type in Hr−2, which can be solved by successive approximations), in other
words, ∂2

xu ∈ C([0, T ],Hr−2).
If w1(t) = ∂x∂yv(t), we have

dw1

dt
+A(t)w1 +B1(t)w1 = f1(t), (20)
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where

B1(t) = Q(t)[p(u(t))p−1]ux(t)Q(−t) =
1

2
B(t) (21)

f1(t) = −Q(t)((p(p − 1)up−2(t)[ux(t)]
2 + p(u(t))p−1uxx(t))uy(t)). (22)

As above, we have

w1(t) = U(t, 0)φxy +

∫ t

0
U(t, τ)[−B1(τ)w1(τ) + f1(τ)]dτ. (23)

Inasmuch as uxx ∈ C([0, T ],Hr−2), f1 ∈ C([0, T ],Hr−2). Since, also, B1(t) ∈
B(Hr−2) is strongly continuous in the interval [0, T ], arguing as before, we have
that w1 ∈ C([0, T ],Hr−2) or, equivalently, uxy ∈ C([0, T ],Hr−2).

Analogously, if w2(t) = ∂2
yv(t), we have

dw2

dt
+A(t)w2 = f2(t), (24)

where

f2(t) = −Q(t)((p(p − 1)up−2(t)ux(t)uy(t) + 2p(u(t))p−1uxy(t))uy(t)). (25)

Then,

w2(t) = U(t, 0)φyy +

∫ t

0
U(t, τ)f2(τ)dτ. (26)

Since uxy ∈ C([0, T ],Hr−2), f2 ∈ C([0, T ],Hr−2). Repeating the argument
above, we can conclude that w1 ∈ C([0, T ],Hr−2) or, equivalently, ∂2

yu ∈
C([0, T ],Hr−2).

Then, we have proved that, if s < r ≤ s+ 1 and φ ∈ Hr, u ∈ C([0, T ],Hr).
To the case r > s + 1, as φ ∈ Hs′ , for s′ < r, using a bootstrapping argument
can be shown that u ∈ C([0, T ],Hr).

4. Remarks on the Persitence

The following result deals with the persistence of the solutions of (1) in Xs.

Theorem 9. Let s > 2, p odd. And u ∈ C([0, T ];Xs) is the solution of
(1), corresponding to an initial data φ ∈ Xs, then u ≡ 0.
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Proof. In view of the fact that u ∈ C([0, T ];Xs), û is continuous in η.
Multiplying by y in (1) we obtain

∂t(yu) + yH(y)∂2
xu+ yupux = 0, (27)

and since

‖yupux‖0 ≤ |up−1ux|∞‖yu‖0 ≤ c‖u‖ps‖yu‖0,

thus yupux ∈ L2.

In the similar way, it can be shown that yupux ∈ C([0, T ];L2).

Let us apply the Fourier transform to (27):

i∂t(∂ηû) = i∂η [sgn(η)ξ
2û]− ξ∂η

ûp+1

p+ 1

= iδ(η)ξ2û+ isgn(η)ξ2∂ηû− ξ∂η
ûp+1

p+ 1
.

Now integrating with respect to t, we achieve that for every t ∈ (0, T ], the
function

(ξ, η) → δ(η)ξ2
∫ t

0
û(τ, ξ, η)dτ

is measurable. Hence we must have

∫ t

0
û(τ, ·, 0)dτ = 0, ∀t ∈ [0, T ], (28)

and therefore û(t, ·, 0) = 0, ∀t ∈ [0, T ].

Taking into account the boundedness of the Fourier transform we obtain,
for t ∈ [0, T ], η ∈ R and a.e. ξ ∈ R:

û(t, ξ, η) = û(0, ξ, η) −

∫ t

0

̂︷ ︸︸ ︷
H(y)∂2

xu+ upux(τ, ξ, η)dτ

= û(0, ξ, η) +

∫ t

0
[isgn(η)(ξ2)û+ i

ξ

p + 1
ûp+1](τ, ξ, η)dτ.

Evaluating at η = 0, one gets

∫ t

0
ûp+1(τ, ξ, 0)dτ = 0, ∀t ∈ [0, T ], ξ−a.e.
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It is clear that
∫

up+1(t, x, y)dy = 0,∀x ∈ R, ∀t ∈ [0, T ].

And the result follows at once.

Corollary 10. Let u ∈ C([0.T ];Hs(R2)), s > 2, be a solution of (1), and
p odd. If there exists R > 0 such that

suppu(t, x, ·) ⊂ (−R,R), ∀x ∈ R,

and for each t ∈ [t1, t2], t1 < t2, t1, t2 ∈ [0, T ], then u ≡ 0 in the interval [t1, t2].

A proof of this corollary can be seen in [10].
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