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Abstract: In this paper we show that the Cauchy problem

up + HWO?u + uPuy, =0, peN,
u(0) = ¢(z,y)

is locally well-posed in the Sobolev space H*(R?), for s > 2 and that as in the
case of the BO (Benjamin-Ono) equation, there is a lack of persistence in X*.
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1. Introduction
The purpose of this paper is to show that the Cauchy problem for

ur + HY 02 u 4 uPu, = 0, (1)

is locally well-posed in the Sobolev space H*(R?), for s > 2. Observe that (1)
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is a modification of the Benjamin-Ono equation
dyu+ HD 0 + udyu = 0, (2)

which describes certain models in physics related to wave propagation in a
stratified thin regions (see [3]). This last equation shares with the KdV equation

many interesting properties. For example, both equations possess infinite con-
servation laws, they have solitary waves as solutions which are stable and behave
like soliton (this last is evidenced by the existence of multisoliton type solutions)
(see [2] and [13]). Also, the local and global well-posedness were proven in the
Sobolev spaces context (in low regularity spaces inclusive, see, e.g., [7], [14],
[11], [12] and [15]).

The plan of this paper is the following: In Section 2, we present the basic
notations and results that are needed. In Section 3, we examine the local well-
posedness in H* and Section 4, using some ideas from [10], we show that there
is not persistence of 1 in X?.

The main tool that we use is the abstract theory developed by Kato in [8]
to prove the local well-posedness of quasi-linear equations of evolution. Kato
considered the problem

Ou+ A(t,u)u = f(t,u) € X, 0 <t, (4)
U(O) =ug €Y,

in a Banach space X with initial data in a dense subspace Y of X, where A is a
map from R x X into the linear operators of X with dense domain and f(t,u)
is a function from R X Y to X, which satisfy the following conditions:

(X) There exists an isometric isomorphism S from Y to X.
There exists Ty > 0 and W a open ball with center wg such that:

(A1) For each (t,y) € [0,Tp] x W, the linear operator A(t,y) belongs to
G(X,1, /), where (3 is a positive real number. In other words, —A(t, y) generates
a Cj semigroup such that

le* 40 |5y < €%, s €[0,00).
It should be noted that if X is a Hilbert space, A € G(X, 1, ) if and only if,

a) (Ay,y)x = —Bllyl% for all y € D(A),

b) (A+ \) is onto for all A > g.
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(Ag) For all (t,y) € [0,Tp] x W the operator
B(t,y) =[S, A(t,y)]S™" € B(X)
and is uniformly bounded, i.e., there exists A\; > 0 such that
I1B(t,y)llpx)y < A1 for all (t,y) € [0,Tp] x W.
In addition, for some pu; > 0, for all y and z € W,

1B(t,y) — Bt 2)lsox) < mlly = =y

(A3) Y C D(A(t,y)), for each (t,y) € [0,Tp] x W, (the restriction of A(t,y)
to Y belonging to B(Y, X)) and, for each fixed y € W, t — A(t,y) is strongly
continuous. Furthermore, for each fixed ¢ € [0,Tp], it is satisfied the following
Lipschitz condition:

[A(t,y) = At 2)lBev,x) < pally — 2,

where p9 > 0 is a constant.
(Ag) A(t,y)wy € Y for all (t,y) € [0,T] x W. Also, there exists a constant
A9 such that

JAG ywolly < Aa, for all (t,y) € [0,T5] x W.

(f1) f is a bounded function from [0,7p] x W in Y, i.e., there exists A3 such
that
1 (& 9)lly < As, for all (¢,y) € [0,To] x W,

Besides, the function ¢ € [0,7p] — f(t,y) € Y is continuous with respect to X
topology and, for all y and z € Y, we have that

£t y) = Ft2)lx < pslly — =[x,

when p3 > 0 is a constant.

Theorem 1 (Kato). Suppose that the conditions (X), (A1) — (A4) ¥ (f1)
are satisfied. For ug € Y, there exist 0 < T < Ty and a uniquew € C([0,T];Y )N
C1((0,T); X) solution to (4). Besides, the map ug — u is continuous in the
following sense: consider the following sequence of Cauchy problems,

Opun + An(taun)un = fn(taun) t>0
Un (0) = up, n € N.

®)



646

G. Preciado

Assume that conditions (X), (A1)—(A4) and (f1) hold for all n > 0 in (5), with
the same X, Y and S, and the corresponding 3, A\1—As, po—3 can be chosen
independently from n. Also assume that

s-lim A, (t,w)

n—00

A(t,w) in B(X,Y)

s-lim By, (t,w)

n—00

lim f,(t,w)= f(t,w) in Y

n—oo

B(t,w) in B(X)

lim wu,, =up in Y,
n—oo

where s-lim denotes the strong limit. Then, T’ can be chosen in such a way that
u, € C([0,T),Y)NCH(0,T), X) and

lim sup [un(t) = u(t)[ly = 0.

A proof of this theorem can be seen in [8].

2. Preliminaries

The following notations will be used through this paper.

1.

2.

3.

S(R?) is the Schwartz space.
S’(R?) is the space of tempered distributions.

For f € 8'(R?), J/”\is the Fourier transform of f and f is the inverse Fourier
transform of f. We recall that

f&n) = L/ f(z,y)e " dady,
21 R2

for all (&,7) € R?, when f € S(R?).

. HW) is the Hilbert transform with respect to the variable y. If f € S (R2),

=2 (o [ ).

. For s € R, H* = H*(R?) is the Sobolev space of order s.
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6. The inner product in H® is denoted as

~ RS

(b= [ 1+ €+ FlemaEmdcan

7. A% = (1 - A2,

8. If X,Y are Banach spaces, B(X,Y) is the space of all continuous linear
operators endowed with the norm:

HT”B(X,Y) = sup [|Tz].

llell=1
If X =Y we simply write B(X).
9. [A, B] will denote the commutator of A and B.

10. X® = H5(R?)N L%(1 +y?) where L?(1 +y?) is the space of all real valued
measurable functions such that

1
2
sy = ([ Fa+02) oy < o
X? is a Hilbert space when provided with the inner product:

(fv g)X5 = (f7 g)s + (f7 g)L2(1+y2)‘

The following result about commutators of operators due to Kato is a part
of the important stock of tools that are used in the analysis (its proof can be
found in [9]).

Proposition 2 (Kato’s inequality). Let f € H®, s > 2, A = (1 — A?)1/?
and My be the multiplication operator by f. Then, for |¢|, |5 < s —1,
ATS[ASTL M)A~ € B(L*(R?)) and

ATFIATHE A < |V 6
ECSETAL S I 2 (6)
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2. Local Theory in Sobolev Spaces

In this section, we prove that the Cauchy problem

Ut + H(y)ﬁﬁu +uPu, =0, peN
u(0) = ¢(z,y)

is locally well-posed in the Sobolev space H*(R?), for s > 2.

Theorem 3. Lets > 2andp € N. For ¢ € H*(R?), there exist T > 0, that
depends only on ||¢||s, and a unique u belonging to C([0, T, H*(R?))nC*([0,T7,
H*72(R?)) as solution to the Cauchy problem

+HWO2u + uPu, = 0
{ut Su+ uPuy ' ()

u(0) = ¢

Furthermore, the map ¢ — u from H*® to C([0,T], H®) is continuous.

Proof. Tt is clear that w is a solution to (8) if and only if v(t) = Q(t)u(t) is
solution to

dv
— + Alt =0
dt + ( ,'U)'U , (9)

v(0) =¢
where Q(t) = M 92 and
At v) = Q(E)(Q(—1)v)" 8 Q(=1).

Let us see for this problem that each one of the conditions of Kato’s theorem
(Theorem 1) is satisfied. For the moment, let X = L?(R?) and Y = H*(R?),
for s > 2. It is clear that S = (1 — A)Z is an isomorphism between X and Y.
In the following lemmas we verify that the problem (9) satisfies the conditions
(A1)-(A4) of Theorem 1.

Lemma 4. A(t,v) € G(X,1,5(v)), where
5(0) = 3D 04 (QE)0P (e

(see the condition (A1) before Theorem 1).
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Proof. Since {Q(—t)} is a strongly continuous group of unitary operators,
and thanks to the observation immediately below of the condition (A;) of The-
orem 1, it follows the lemma. ]

Lemma 5. IfS = (1 — A)*?, then

SA(t,v)S™! = A(t,v) + B(t,v),

where B(t,v) is a bounded operator in L?, for all t € R and v € H*, and
satisfies the inequalities

|B(t,v)|lpx) < Av) (10)
|B(t,v) = B(t,v')|px) < u(v,v)[[v" = vls, (11)
for all t € R, and every v and v' € H®, where

Aw) = sup G| V(Q(=1)v)" s
and p(v,v') = Cps([[0]E™ + [lv/[[E7).

Proof. From Proposition 2 it follows that [S, (Q(—t)v)P]9,S~! € B(X) and
115, (Q(=1)v)?10: 5 px) < CslIV(Q(=1)0)5-1.

Therefore, B(t,v) € B(X) and it satisfies (10).
Proceeding as above and taking into account that

[P = wPlls < Cps(lullZ™ + [0llF™)lu = vlls, (12)

for all w and v € H®, we can show (11). O

Lemma 6. H?®(R?) C D(A(t,v)) and A(t,v) is a bounded operator from
Y = H%(R?) to X = L?(R?) with
[A®E, 0)lBx,y) < Av),

for all v € Y, and where X is as in Lemma 5. Also, the function t — A(t,v) is
strongly continuous from R to B(Y, X), for all v € H®. Moreover, the function
v+ A(t,v) satisfies the following Lipschitz condition

[A(t, v) = A(t, )| Bv,x) < plv, o)][o —[lx,

where 1 is as in the lemma above.
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Proof. In view of the fact that Q(—t) = (em(y)a”)*1 is an unitary operator
in X = L?(R?), from the definition of A(t,v), it follows H*(R?) C D(A(t,v)).
In fact,

[A(t,0) fllo = [|Q(=)v)?0:Q (%) fllo
< Cs[(Q(=t)0)?[[s10x fllo < A flls,  (13)

forall feVY.
Now, for all £,# € R and all f,v € Y, we have

1At 0) f = A, 0)fllo < [[(Q() — Q) (Q(=t)v)"0:(Q(1).1) |,
+{[(Q(=t)v) — (Q(=t)v)?) 0:(Q(1).N) |,
+ Q1)) 0:(Q(t) — Q) flo-

Since the group {Q(—t) }+er is strongly continuous and the function v — v? from
Y itself is continuous, t — A(t,v) is strongly continuous from R to B(Y, X).
Finally, for any ¢ € R we have

[AGE ) f = Alt,v) fllo < [(QHV) = (Q(1)v)Pl|o]|02Q(t) £l
< Gl x
+ @MV o) I f sl = vllo
< (v, )l = vllollf1ls-

This completes the proof of the lemma. O

The preceding lemmas show that the problem (9) satisfies the conditions of
Theorem 1 and, therefore, for each ¢ € H® s > 2, there exists T" > 0, which
depends on [|¢||s, and an unique v € C([0,T], H*(R*) N CL([0,T], H*~1(R?))
solution to problem (9). Also, the map ¢ + v is continuous from H*(R?) to
C([0,T), H*(R?). Now, from the properties of group Q(—t) it can be verified
that u(t) = Q(—t)v(t) is solution to (8) and satisfies the properties enunciated
in Theorem 3. O

Theorem 7. The time of existence of the solution to (8) can be chosen
independently from s in the following sense: if u € C([0,T], H®) is the solution
to (8) withu(0) = ¢ € H", for somer > s, thenwu € C([0,T], H"). In particular,
if g € H®, u € C([0,T], H®).

Proof. The proof of this result is essentially the same as part (¢) of Theorem
1in [9]. We will briefly outline this. Let r» > s, u € C([0,T], H®) be the solution
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to (8) and v = Q(¢)u. Let us suppose that » < s+ 1. Applying 92 in both sides
of the differential equation in (9), we arrive at the following linear evolution
equation in w(t) = O2v(t),

dw

o + A(t)w + B(t)w = f(t), (14)

where

A(t) = 0:Q(1) (u(t))"Q(~1) (
B(t) = 2Q()[p(u(t)’ ™ Jus ()Q(~1) (16)
F(t) = =Q()p(p — Dt (t)][us ()] (

Since v € C([0,T), H*) we have that w € C([0,T); H*=2). Also, w(0) =
Gpw € H™™2, because ¢ € H". Let us prove that w € C([0,T], H"~2). To do
this, we shall prove that the Cauchy problem associated to the linear equation
lineal (14) is well-posed for 1 — s < k < s — 1. In this direction, we have the
following lemma whose proof is completely similar to that of Lemma 3.1 in
[9]. O

Lemma 8. The family {A(t)}o<t<r has an unique family of evolution
operators U(t, T)o<i<,<7 in the spaces X = H", Y = HF (in the Kato sense),
where

—s<h<s—-2 1—-s<k<s—1 k+1<h. (18)

In particular, U(t,7): H" — H" for —s <r <s—1.
Then, the last lemma allows us to show that w satisfies the equation

w(t) = U (t,0)as + /0 Ut 7) = B(r)w(r) + f(r)dr. (19)

Now, since w(0) = ¢, € H" =2, by (17), fisin C([0,T], H*~') c C([0,T], H"~?)
(if < s+ 1) and B(t), given in (16), is a family of operators in B(H"2)
strongly continuous for ¢ in the interval [0, 7] (if » < s+ 1), from Lemma 8, the
solution to (19) is in C([0, 7], H"~2) ((19) is an integral equation of Volterra
type in H"~2, which can be solved by successive approximations), in other
words, 92u € C([0,T], H"™2).
If wy(t) = 0,0yv(t), we have
dw1

— A + Bithor = Ai(0), (20)
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where

Bi(t) = Q) p(u(®)P ua(NQ(~1) = 3 B(1) (21)
1u(t) = ~QU)((p(p — V() (0 + plu(®))? e )y (1), (22)

As above, we have

wi(t) = U(t,0)pzy + /0 U(t,7)[=Bi(1)wi(7) + fi(7)]dT. (23)

Inasmuch as u,, € C([0,T), H"=2), fi € C([0,T], H"~2). Since, also, Bi(t) €
B(H"™2) is strongly continuous in the interval [0, 7], arguing as before, we have
that wy € C([0,T], H"™2) or, equivalently, u,, € C([0,T], H"~2).
Analogously, if wa(t) = 851)(15), we have
de

S 4 Altyws = fo(0) (24)

where

f2(t) = =Q()((p(p — )uP 2 (t)ua (t)uy (1) + 2p(u(t))P~ tay (8))uy (1)) (25)
Then,
wa(t) = U(t,0)py, —I—/O Ul(t,T)fa(T)dr. (26)

Since ug,, € C([0,T),H"%), fo» € C([0,T],H""%). Repeating the argument
above, we can conclude that w; € C([0,T], H~?) or, equivalently, 8§u €
C([0,T], H=2).

Then, we have proved that, if s <r <s-+1and ¢ € H", uw € C([0,T],H").
To the case r > s+ 1, as ¢ € H¥, for s < r, using a bootstrapping argument
can be shown that v € C([0,T], H").

4. Remarks on the Persitence

The following result deals with the persistence of the solutions of (1) in X*.

Theorem 9. Let s > 2, p odd. And u € C([0,T]; X®) is the solution of
(1), corresponding to an initial data ¢ € X*®, then u = 0.
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Proof. In view of the fact that v € C([0,7]; X?®), @ is continuous in 7.
Multiplying by y in (1) we obtain

A (yu) + yHW 0*u + yuPu, = 0, (27)

and since
lyuPugllo < [P~ oo llyullo < ellullZ]lyullo,

thus yuPu, € L.
In the similar way, it can be shown that yuPu, € C([0,T]; L?).
Let us apply the Fourier transform to (27):
L
. ~ . 2~
10y (Opur) = 10y [sgn(n)&“u] — f@nm

—

uptl
p+1°

= i6(n)&* 0 + isgn(n)&*0pi — £0y,

Now integrating with respect to ¢, we achieve that for every t € (0,71, the
function

t
(€)= e [ (e mir
is measurable. Hence we must have
t
/ u(r,-,0)dr =0, Vtel0,T], (28)
0

and therefore u(t,-,0) = 0, V¢ € [0,T].
Taking into account the boundedness of the Fourier transform we obtain,
fort €[0,7], n € R and a.e. £ € R:

—
At &) = @(0,€,1) — / HOPu + iPuy (. €, m)dr
0

é’ —

L) (7, €, ),

—a(0,6,7) + /0 isem () (€ + -

Evaluating at n = 0, one gets

t/\
/ uPtl(r,£,0)dr =0, Vte[0,T], &—ae.
0
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It is clear that

/U”“(t,x,y)dy =0,Vz eR, Vtel0,T]

And the result follows at once. O

Corollary 10. Let u € C([0.T]; H*(R?)), s > 2, be a solution of (1), and

p odd. If there exists R > 0 such that

suppu(t,x,-) C (=R, R), VxR,

and for each t € [ty,1ts], t1 < ta, t1,t2 € [0,T], then uw = 0 in the interval [ty t2].

1]

2]

A proof of this corollary can be seen in [10].
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