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Abstract: In this work we present some considerations about cohomology
of finite groups. In the first part we use the restriction map in cohomology to
obtain some results about subgroups of finite index in a group. In the second
part, we use Tate cohomology to present an application of the theory of groups
with periodic cohomology in topology.
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1. Introduction

The theory of cohomology of groups provides a significant interaction between
Algebra and Topology and it was very important in the creation of an important
area of mathematics: the Homological Algebra. Moreover, that theory is closely
related with the theory of ends of groups and group pairs, and those invariants
have an interpretation in the graph theory when G is finitely generated, more
specifically, a Cayley graph.

An important invariant for a group pair (G,S) with S a family of subgroup
of G is the number given by the dimension of the kernel of the restriction map
resGS : H1(G,M) → H1(S,M), for specific Z2G-modules M , which has been
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studied by Andrade and Fanti in [1], [2], [4] and Andrade et al. in [3]. In Section
2 we introduce the restriction map and we present some results in group theory
by using that map.

In Section 3 we work with the theory of cohomology of finite groups. This
theory arises in various contexts in Topology and Algebra. One of the classic
results in the area is the proof that any finite group which acts freely on a
sphere must be periodic (equivalently, have all its abelian subgroups cyclics).

Homology and cohomology of finite groups have similar properties and Tate
(see Brown [5]) discovered an ingenious way to exploit similarities between H∗

an H∗ for G a finite group. An illustration of the usefulness of Tate coho-
mology theory is the theory of groups with periodic cohomology. If we know
that a group G has periodic cohomology, then the task of computing H∗(G)
is obviously enormously simplified. Here we present an application of that in
Topology.

2. The Restriction Map in Cohomology of Groups

In this section we give the definition of the restriction map in cohomology and
some applications in the theory of groups.

Let G be a group, S a subgroup of G and M a RG-module, with R a
commutative ring with unit. We recall here the definition of (co)homology of
G with coefficients in M . For details, see Brown [5].

Definition 1. Let G be a group. A RG-projective resolution of a RG-
module M is an exact sequence of RG-modules:

· · · → Fn
∂n→ Fn−1 → · · · → F1

∂1→ F0
ε
→ M → 0

in which each Fi is projective. The map F0
ε
→ M is called augmentation map

and we denote the projective resolution by F։M .

Definition 2. Let G be a group, M a RG-module and F ։ R a projective
resolution of R over RG, with R viewed as trivial RG-module. The homology

groups of G with coefficients in M are, for all n ∈ Z, defined by

Hn(G;M) = Hn(F ⊗G M).

The cohomology groups of G with coefficients in M are, for all n ∈ Z, defined
by

Hn(G;M) = Hn(HomG(F,M)).
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Definition 3. Let G be a group an M a RG-module. The map resGS :
H1(G,M) → H1(S,M) induced by the canonical inclusion map i : S → G is
called the restriction map in the level 1 of cohomology, or simply, restriction
map.

In this work the ring R will be Q, Z or Z2. Now we present some results
about cohomology of finite group by using the restriction map.

Proposition 1. Let G be a group, S a finite subgroup of G and M =
Q(G/S) the free QG-module generated by the set G/S. Then

resGS : H1(G,Q(G/S)) → H1(S,Q(G/S))

is the null map. Namely, in the conditions of the proposition, if resGS 6= 0, then
S (hence G) is infinite.

Proof. Let | S |= m and consider the homomorphism

φm : Q(G/S) → Q(G/S),
α → m.α

where m.α = α+ · · · + α( m-times).
Since Q(G/S) is free, if mα = 0 then α = 0. Thus φm is a monomorphism.

Furthermore, φm is an epimorphism, since given β ∈ Q(G/S), there exists
α = (1/m)β ∈ Q(G/S) such that φm(α) = β. Hence φm is an isomorphism and
so m is invertible in the Q(G/S). By Brown [5], Corollary III.10.2, we have
H1(S,Q(G/S)) = 0.

Therefore, resGS is the null map.

Remark 1. In Andrade and Fanti [1], Corollary 3.6, a proof of Proposition
1 is given when | S | is odd and R = Z2. Hence, it is shown in Proposition 1
that when R = Q, the result can be extended for all | S |.

Theorem 4. Let G be a group and S a subgroup of G. If [G : S] < ∞,
then resGS : H1(G,Z2(G/S)) → H1(S,Z2(G/S)) is a monomorphism. Thus,
under the conditions of the theorem, if resGS is not injective then [G : S] = ∞.

Proof. Denote Hom(Z2(G/S),Z2) by Z2(G/S). By Shapiro’s Lemma (see
Brown [5], III.6.2) we have an isomorphism

s : H1(G,Z2(G/S)) → H1(S,Z2).
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Let α : S → G be the inclusion map and let π : Z2(G/S) → Z2 be the
canonical projection defined by π(f) = f(1S) ∈ Z2, for all f ∈ Z2(G/S). In
the cohomology, we have

H1(G,Z2(G/S))
α∗

→ H1(S,Z2(G/S))
π∗

→ H1(S,Z2)

and, by Brown [5], p. 80, π∗ ◦ α∗ = s (Shapiro’s isomorphism). It follows that
α∗ is a monomorphism.

Now, since [G : S] < ∞, we have an isomorphism

ϕ : Z2(G/S) → Z2(G/S)

(see Brown [5], III.5.9) which provides the following commutative diagram:

H1(G,Z2(G/S))
resG

S→ H1(S,Z2(G/S))
ϕ∗
G ↓≃ 	 ≃↓ ϕ∗

S

H1(G,Z2(G/S))
α∗

→ H1(S,Z2(G/S))).

Hence, for all [f ] ∈ ker resGS , res
G
S ([f ]) = 0 ⇒ ϕ∗

S(res
G
S ([f ])) = 0 ⇒ (α∗ ◦

ϕ∗
G)([f ]) = 0 ⇒ [f ] = 0, since (α∗ ◦ ϕ∗

G) is a monomorphism.

Therefore ker resGS = 0 and so, resGS is a monomorphism.

Remark 2. The reciprocal of Theorem 4 is not true since there exist group
pairs (G,S) for which resGS is a monomorphism and [G : S] = ∞ as shown in
the following example.

Example 1. Let G =< a > ⊕ < b > ⊕ < c >≃ Z ⊕ Z ⊕ Z be and let
S =< c >≃ Z. The subgroup S is normal in G and, by MacLane [6], p.355, we
have the exact sequence:

0 → H1(G/S; (Z2(G/S)S)
p
→ H1(G;Z2(G/S)

resG
S→ H1(S;Z2(G/S)).

Since S ⊳ G, the S-action in Z2(G/S) is trivial and so, Z2(G/S)S = Z2(G/S).
It follows that ker resGS = H1(G/S;Z2(G/S)). By using the invariant end
defined in Scott and Wall [7], we have

e(G/S) = 1 + dimH1(G/S;Z2(G/S)) = 1, (∗)

which provides ker resGS = H1(G/S;Z2(G/S)) = 0.
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To see (∗), we can observe that, since G/S is finitely generated, e(G/S) mea-
sures the maximum number of unlimited connected components of the Cayley
graph ΓG/S when we remove compacts subsets K of ΓG/S . In other words,

e(G/S) = sup{n(K),K compact subset of ΓG/S}

where n(K) is the number of unlimited connected components of ΓG/S −K.

Since G/S = Z⊕ Z, the Cayley graph is

ΓG/S =
⋃

n∈Z

({n} × R) ∪ (R× {n}) ⊂ R2

and if we remove a compact K of ΓG/S , we have only one unlimited connected
component.

3. Tate Cohomology and Periodic Cohomology of groups

In this section we give some properties about groups with periodic cohomol-
ogy and an application in Topology. First, we introduce some notations and
definitions.

Let M be a ZG-module and consider the submodule of M

A =< gm−m | g ∈ G and m ∈ m > .

Then

MG = M/A and MG = {m ∈ M | gm = m,∀g ∈ G}.

If G is finite, i.e. G = {t1, t2, . . . , tn}, we define N : M → M by N(m) =

(
n∑

i=1

ti)m. It is easy to show that N induces the map

N : MG → MG

given by N(m) = (
n∑

i=1

ti)m. N is called norm map.
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Definition 5. Let G be a finite group and M a ZG-module. The Tate
cohomology of G with coefficients in M is defined by

Ĥ i(G,M) =





H i(G,M), i > 0

cokerN, i = 0

kerN, i = −1

H−i−1(G,M) i < −1

where N : MG −→ MG is the norm map.

Example 2. If G is a finite group with |G| = n, then

Ĥ0(G,Z) = Zn and Ĥ−1(G,Z) = {0}.

In fact, since the G-action in Z is trivial, we have N : Z −→ Z with

N(r) = (
n−1∑

i=0

ti)r = nr, for all r ∈ Z. Therefore,

Ĥ0(G,Z) = cokerN = Z/ImN = Z/nZ = Zn

and

Ĥ−1(G,Z) = kerN = {0}.

Remark 3. There is a cup product in Tate cohomology,

Ĥp(G,M) ⊗ Ĥq(G,N) −→ Ĥp+q(G,M ⊗N)
u⊗ v 7−→ u ∪ v

with formal properties analogous to the properties of the cup product for or-
dinary cohomology H∗(G,Z). In particular, the cup product has an identity
element 1 ∈ Z/|G|Z = Ĥ0(G,Z) and is associative. Thus Ĥ∗(G,Z) is a graded

ring with idendity. Furthermore, Ĥ∗(G,M) is a module over Ĥ∗(G,Z), for any
M .

Definition 6. A finite group G is said to have periodic cohomology if for
some d 6= 0, there is an element u ∈ Ĥd(G,Z) which is invertible in the ring
Ĥ∗(G,Z).
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Remark 4. In the conditions of the previous definition, cup product with
u provides a periodic isomorphism

u ∪ − : Ĥn(G,M)
≈

−→ Ĥn+d(G,M)

for all n ∈ Z and all ZG-module M . In particular, taking n = 0 e M = Z, we
see that Ĥd(G,Z) ≈ Z/|G|.Z and that u generates Ĥd(G,Z).

If we know that a group G has periodic cohomology, then the task of com-
puting Ĥ∗(G) is obviously enormously simplified. The following result gives us
a criterion for deciding when G has periodic cohomology.

Theorem 7. (Brown [5], VI.9.1) The following conditions are equivalent:
(i) G has periodic cohomology.
(ii) There exist integers n and d, with d 6= 0, such that, for all ZG-modules

M , Ĥn(G,M) ≈ Ĥn+d(G,M).
(iii) For some d 6= 0, Ĥd(G,Z) ≈ Z/|G|.Z.
(iv) For some d 6= 0, Ĥd(G,Z) contains an element u of order |G|.

Example 3. Let G =< t >≃ Zn be a finite cyclic group of order n. By,
Brown [5], I.6, we have a projective resolution of period d = 2,

· · · −→ ZG
t−1
−→ ZG

N
−→ ZG

t−1
−→ ZG

ε
−→ Z −→ 0,

and, it follows from this resolution that

Hi(G;Z) =





Z, if i = 0

Zn, if i is odd

0, if i is even

and H i(G;Z) =





Z, if i = 0

Zn, if i is even .

0, if i is odd

By using this and Example 2, it follows that

Ĥ i(G,Z) =

{
Zn, for i even
{0} for i odd

.

Therefore, by Theorem 7,(iii), G has periodic cohomology with period d = 2.

Example 4. If G is a finite group which acts freely on a
CW-complex X homeomorphic to an odd dimensional sphere S2k−1, then G
has periodic cohomology.
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Indeed, by Brown [5], I.6.2, G admits a periodic resolution of period d = 2k
and thus condition (ii) of the previous theorem is true. Hence, G has periodic
cohomology.

An application of the cohomology of groups in topology is provided by the
next theorem.

Theorem 8. Let G be a group which has a subgroup with periodic coho-
mology. If Y is a K(G, 1)-complex then Y has infinite dimension. In particular,
Y cannot be a manifold.

Proof. Let H be a subgroup of G with periodic cohomology. Thus, by
Theorem 7, there exists an integer d such that Ĥn(G,Z) ≈ Ĥn+d(G,Z), ∀ n ∈ Z.
In particular, we can assume d > 0, and from the definition of Tate cohomology
we have

Hn(H,Z) ≃ Hn+d(H,Z),∀n > 0. (∗)

Suppose that Y is a K(G, 1)-complex of finite dimension m. Hence, the aug-
mented cellular chain complex of the universal cover Ỹ of Y :

C∗(Ỹ ) : 0 → Cm(Ỹ ) → · · · → C1(Ỹ )
∂1−→ C0(Ỹ )

ε
−→ Z −→ 0

is a free resolution of Z over ZG.

Since H is a subgroup of G, then C∗(Ỹ ) is also a projective resolution of Z
over ZH. Thus, Hk(H) = Hk(Z ⊗ZH C∗(Ỹ )) = 0 if k > m, which contradicts
(∗). Therefore, Y has infinite dimension and can not be a manifold. �

Corollary 9. Let G be a group which has a torsion element and let Y be
a K(G, 1)-complex. Then Y is infinite dimensional. In particular, Y cannot be
a manifold.

Proof. If t is a torsion element of G of order n, then H =< t >≃ Zn, and
by Example 3, H has periodic cohomology. By Theorem 8, Y can not be a
manifold. �

Example 5. Consider G = Zp⊕Zp where p is a prime. It can be shown, by
using Kunneth formula, that G does not have periodic cohomology. However,
H = Zp is a subgroup of G with periodic cohomology. Therefore, the complex
K(Zp ⊕ Zp, 1) is infinite dimensional.
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