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Abstract: An operator T ∈ B(H) is said to be (p, k)-quasiposinormal op-
erator, if T ∗k(c2(T ∗T )p − (TT ∗)p)T k ≥ 0 for a positive integer 0 < p ≤ 1,
some c > 0 and a positive integer k. In this paper, we prove that, the (p, k)
quasi-posinormal operator is a pole of resolvent of T ∗. Then we prove that if
{Tn} is a sequence of operators in the class (p, k) − Q and (p, k) − QP which
converges in the operator norm topology to an operator T in the same class,
then the functions spectrum, Weyl spectrum, Browder spectrum and essential
surjectivity spectrum are continuous at T .
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1. Introduction and Preliminaries

Let H be an infinite dimensional complex Hilbert space and B(H) denote the
algebra of all bounded linear operators acting on H. Every operator T can be
decomposed into T=U |T | with a partial isometry U , where |T |=

√
T ∗T . In [8],

H.C. Rhaly Jr. introduced and studied posinormal operators. He showed a
characterization of posinormality and spectral properties of posinormal oper-
ators. Moreover, he gave many fruitful examples of posinormal operators for
the Casáro operator. As a further generalization of posinormal operators, M.
Itoh [16] introduced p-posinormal operators and he proved that a p-posinormal
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operator is M -paranormal operator. An operator T ∈ B(H) is positive, T ≥ 0,
if (Tx, x) ≥ 0 for all x ∈ H, and posinormal if there exists a positive λ ∈ B(H)
such that TT ∗ = T ∗λT . Here λ is called interrupter of T . In other words, an
operator T is called posinormal if TT ∗ ≤ c2T ∗T , where T ∗ is the adjoint of T
and c > 0, see [8]. An operator T is said to be heminormal, if T is hyponor-
mal and T ∗T commutes with TT ∗. An operator T is said to be p-posinormal
if (TT ∗)p ≤ c2(T ∗T )p for some c > 0. It is clear that 1-posinormal is posi-
normal. In [19], M. Y. Lee and S. H. Lee have studied a structure theorem
and some properties for (p, k)-quasi-posinormal operators. They have proved
that if T is invertible, then T is (p, k)-quasiposinormal. Also T and T ∗ are
(p, k)-quasi-posinormal for invertible T .

An operator T is said to be (p, k)-quasi-posinormal, if

T ∗k(c2(T ∗T )p − (TT ∗)p)T k ≥ 0,

where k is a positive integer, 0 < p ≤ 1 and c > 0. (p, k)-quasi-posinormal
operated is denoted by (p, k)−QP a (p, 1)-quasi-posinormal is p-posinormal.

An operator T ∈ B(H) is said to be (p, k)-quasihyponormal operator, de-
noted by (p, k) − Q, for some 0 < p ≤ 1 and integer k ≥ 1 if T ∗k(|T |2p −
|T ∗|2p)T k ≥ 0. Evidently, a (1, k) − Q operator is k-quasihyponormal, a
(1, 1) −Q operator is quasihyponormal.

If T ∈ B(H), we write N(T ) and R(T ) for null space and range of T ,
respectively. Let α(T ) = dimN(T ) = dim (T−1(0)), β(T ) = dimN(T ∗) = dim
(H/T (H)), σ(T ) denote the spectrum and σa(T ) denote the approximate point
spectrum. Then σ(T ) is a compact subset of the set C of complex numbers.
The function σ viewed as a function from B(H) into the set of all compact
subsets of C, with its Hausdorff metric, is know to be an upper semi-continuous
function [14, Problem 103], but it fails to be continuous [14, Problem 102].
Also we know that σ is continuous on the set of normal operators in B(H)
extended to hyponormal operators [14, Problem 105]. The continuity of σ on
the set of quasihyponormal operators (in B(H)) has been proved by Erevenko
and Djordjevic [10], the continuity of σ on the set of p-hyponormal has been
proved by Duggal and Djordjevic [9], and the continuity of σ on the set of G1

- operators has been proved by Luecke [20].
An operator T ∈ B(H) is called Fredholm, if it has closed range, finite

dimensional null space and its range has finite co - dimension. The index of a
Fredholm operator is given by i(T ) = α(T )−β(T ). The ascent of T , asc(T ), is
the least non-negative integer n such that T−n(0) = T−(n+1)(0) and the descent
of T , dsc(T ), is the least non-negative integer n such that T n(H) = T (n+1)(H).
We say that T is of finite ascent (resp., finite descent) if asc(T−λI) < ∞ (resp.,



SPECTRAL CONTINUITY OF (p, k)-QUASIPOSINORMAL... 567

dsc(T−λI) < ∞) for all complex numbers λ. T is said to be left semi-Fredholm
(resp., right semi-Fredholm), T ∈ Φ+(H) (resp., T ∈ Φ−(H)) if TH is closed
and the deficiency index α(T ) = dim(T−1(0)) is finite (resp., the deficiency
index β(T ) = dim(H\TH) is finite); T is semi-Fredholm if it is either left semi-
Frdholm or right semi-Fredholm, and T is Fredholm if it is both left and right
semi-Fredholm. The semi-Fredholm index of T , ind(T ), is the number ind(T )
= α(T ) − β(T ). T is called Weyl, if it is Fredholm of index zero and Browder
if it is Fredholm of finite ascent and descent. Let C denote the set of complex
numbers. The Weyl spectrum σw(T ) and the Browder spectrum σb(T ) of T are
the sets σw(T ) = {λ ∈ C : T − λ is not Weyl} and σb(T ) = {λ ∈ C : T − λ is
not Browder}.

Let π0(T ) denote the set of Riesz points of T (i.e., the set of λ ∈ C such that
T − λ is Fredholm of finite ascent and descent [7]) and let π00(T ) and isoσ(T )
denotes the set of eigen values of T of finite geometric multiplicity and isolated
points of the spectrum. The operator T ∈ B(H) is said to satisfy Browder’s
theorem, if σ(T )\σw(T ) = π0(T ) and T is said to satisfy Weyl’s theorem if
σ(T )\σw(T ) = π00(T ). In [15], Weyl’s theorem for T implies Browder’s theorem
for T , and Browder’s theorem for T is equivalent to Browder’s theorem for T ∗.

Berkani [5] has called an operator T ∈ B(X) as B-Fredholm if there exists
a natural number n for which the induced operator Tn : T n(X) → T n(X) is
Fredholm. We say that the B-Fredholm operator T has stable index if ind(T−λ)
ind(T − µ) ≥ 0 for every λ, µ in the B-Fredholm region of T .

The essential spectrum σe(T ) of T ∈ B(H) is the set σe(T ) = {λ ∈ C : T−λ
is not Fredholm}. Let accσ(T ) denote the set of all accumulation points of
σ(T ), then σe(T ) ⊆ σw(T ) ⊆ σb(T ) ⊆ σe(T ) ∪ accσ(T ). Let πa0(T ) be the set
of λ ∈ C such that λ is an isolated point of σa(T ) and 0 < α(T − λ) < ∞,
where σa(T ) denotes the approximate point spectrum of the operator T . Then
π0(T ) ⊆ π00(T ) ⊆ πa0(T ). We say that a-Weyl’s theorem holds for T if

σaw(T ) = σa(T )\πa0(T ),

where σaw(T ) denotes the essential approximate point spectrum of T (i.e.,
σaw(T ) =

⋂{σa(T + K) : K ∈ K(H)} with K(H) denoting the ideal of com-
pact operators on H). Let Φ+(H) = {T ∈ B(H) : α(T ) < ∞ and T (H) is
closed} and Φ−(H) = {T ∈ B(H) : β(T ) < ∞} denote the semigroup of upper
semi-Fredholm and lower semi-Fredholm operators in B(H) and let Φ−

+(H) =
{T ∈ Φ+(H) : ind(T ) ≤ 0}. Then σaw(T ) is the complement in C of all those
λ for which (T − λ) ∈ Φ−

+(H), see [22]. The concept of a-Weyl’s theorem was
introduced by Rakocvic [23]. The concept states that a-Weyl’s theorem for T
⇒ Weyl’s theorem for T , but the converse is generally false. Let σab(T ) denote
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the Browder essential approximate point spectrum of T .

σab(T ) =
⋂

{σa(T +K) : TK = K T and K ∈ K(H)}
= {λ ∈ C : T − λ /∈ Φ−

+(H) or asc(T − λ) = ∞},

then σaw(T ) ⊆ σab(T ). We say that T satisfies a Browder’s theorem, if σab(T )
= σaw(T ), see [22].

An operator T ∈ B(H) has the single valued extension property at λ0 ∈ C,
if for every open disc Dλ0

centered at λ0 the only analytic function f : Dλ0
→ H

which satisfies
(T − λ)f(λ)=0 for all λ ∈ Dλ0

is the function f ≡ 0. Trivially, every operator T has SVEP at points of the
resolvent ρ(T ) = C/σ(T ); also T has SVEP at λ ∈ isoσ(T ). We say that T
has SVEP if it has SVEP at every λ ∈ C. In this paper, we prove that the
continuity of the set theoretic functions spectrum, Weyl spectrum, Browder
spectrum and essential surjectivity spectrum on the classes consisting of (p, k) -
quasihyponormal operators and (p, k) - quasi-posinormal operators. Note that
if an operator T has finite ascent, then it has SVEP and α(T − λ) ≤ β(T − λ)
for all λ [2, Theorem 3.8 and 3.4]. For a subset S of the set of complex numbers,
let S = {λ : λ ∈ S} where λ denotes the complex number and λ denotes the
conjugate.

2. Main Results

Lemma 2.1. Let T ∈ (p, k)-quasiposinormal operator. If λ ∈ π00(T
∗),

then it is a pole of the resolvent of T ∗.

Proof. If 0 6= λ ∈ π00(T
∗), then λ ∈ isoσ(T ) ⇒ λ is a normal of eigen value

of T ([17], Lemma 2.3) and hence a simple pole of the resolvent of T ([17], Cor.
2.8). If instead, λ = 0 then dim kerT ∗ < ∞ ⇒ ran T ∗ is closed and hence
T ∗ ∈ Φ+(H) implies T ∈ Φ−(H). Since both T and T ∗ have SVEP at 0, it
follows that, asc(T ) = dsc(T ) < ∞ (See [1], Theorem 2.3). Hence 0 is a pole
of the resolvent of T implies 0 is the pole of the resolvent of T ∗

Lemma 2.2. (i) If T ∈ (p, k)−Q, then asc(T − λ) ≤ k for all λ.

(ii) If T ∈ (p, k)−QP, then T has SVEP.
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Proof. (i) Proof of (i) is [13, Page 146] or [25].

(ii) Proof of (ii) is [24, Lemma 2.3].

Lemma 2.3. If T ∈ (p, k)−Q∪ (p, k)−QP and λ ∈ isoσ(T ), then λ is a
pole of the resolvent of T .

Proof. Proof of this lemma is [25, Theorem 6] and [17, Corollary 2.8].

Lemma 2.4. If T ∈ (p, k) − Q ∪ (p, k) − QP, then T ∗ satisfies a-Weyl’s
theorem.

Proof. If T ∈ (p, k) − Q, then T has SVEP, which implies that σ(T ∗) =
σa(T

∗) by [2, Corollary 2.45]. Then T satisfies Weyl’s theorem i.e., σ(T )\σw(T )
= π0(T ) = π00(T ) by [13, Corollary 3.7]. Since π00(T ) = π00(T ∗) = πa0(T ∗),
σ(T ) = σ(T ∗) = σa(T ∗) and σw(T ) = σw(T ∗) = σea(T ∗) by [3, Theorem 3.6(ii)],
σa(T

∗)\σea(T ∗) = πa0(T
∗). Hence if T ∈ (p, k)−Q, then T ∗ satisfies a-Weyl’s

theorem.
If T ∈ (p, k)−QP, then by [24, Theorem 3.4], T ∗ satisfies a-Weyl’s theorem.

Corollary 2.5. If T ∈ (p, k)−Q∪(p, k)−QP, then λ ∈ σa(T
∗)\σea(T ∗) ⇒

λ ∈ isoσa(T
∗).

Lemma 2.6. If T ∈ (p, k)−Q∪ (p, k)−QP, then asc(T − λ) < ∞ for all
λ.

Proof. Since T−λ is lower semi-Fredholm, it has SVEP. We know that from
[2, Theorem 3.16] the SVEP implies finite ascent. Hence the proof follows.

Lemma 2.7. [6, Proposition 3.1] If σ is continuous at a T ∗ ∈ B(H), then
σ is continuous at T .

Lemma 2.8. [12, Theorem 2.2] If an operator T ∈ B(H) has SVEP at
points λ /∈ σw(T ), then σ is continuous at T ⇔ σw is continuous at T ⇔ σb is
continuous at T .

Lemma 2.9. If {Tn} is a sequence in (p, k) − Q or (p, k) − QP which
converges in norm to T , then T ∗ is a point of continuity of σea.
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Proof. We have to prove that the function σea is both upper semi-continuous
and lower semi-continuous at T ∗. But by [11, Theorem 2.1], we have that the
function σea is upper semi-continuous at T ∗. So we have to prove that σea
is lower semi-continuous at T ∗ i.e., σea(T

∗) ⊂ lim infσea(T
∗
n). Assume the

contradiction that σea is not lower semi - continuous at T ∗. Then there exists
an ǫ > 0, an integer n0, a λ ∈ σea(T

∗) and an ǫ-neighbourhood (λ)ǫ of λ such
that σea(T

∗
n)∩ (λ)ǫ = ∅ for all n ≥ n0. Since λ /∈ σea(T

∗
n) for all n ≥ n0 implies

T ∗
n − λ ∈ Φ−

+(H) for all n ≥ n0, the following implications hold:

ind(T ∗
n − λ) ≤ 0,α(T ∗

n − λ) < ∞ and (T ∗
n − λ)H is closed

⇒ ind(Tn − λ) ≥ 0, β(Tn − λ) < ∞
⇒ ind(Tn − λ) = 0, α(Tn − λ) = β(Tn − λ) < ∞
(Since Tn ∈ (p, k)−Q ∪ (p, k)−QP ⇒ ind(Tn − λ) ≤ 0

by Lemma 2.2 and Lemma 2.6)

for all n ≥ n0. The continuity of the index implies that ind(T−λ) = lim
n→∞

ind(Tn−
λ) = 0, and hence that (T−λ) is Fredholm with ind(T−λ) = 0. But then T ∗−λ
is Fredholm with ind(T ∗−λ) = 0 ⇒ T ∗−λ ∈ Φ−

+(H), which is a contradiction.
Therefore σea is lower semi - continuous at T ∗. Hence the proof follows.

Theorem 2.10. If {Tn} is a sequence in (p, k) −Q or (p, k) −QP which
converges in norm to T , then σ is continuous at T .

Proof. Since T has SVEP by Lemma 2.2, σ(T ∗) = σa(T
∗). Evidently, it

is enough if we prove that σa(T
∗) ⊂ lim infσa(T

∗
n) for every sequence {Tn} of

operators in (p, k)−Q or (p, k)−QP such that Tn converges in norm to T . Let
λ ∈ σa(T

∗). Then either λ ∈ σea(T
∗) or λ ∈ σa(T

∗)\σea(T ∗).
If λ ∈ σea(T

∗), then the proof follows, since

σea(T
∗) ⊂ lim infσea(T

∗
n) ⊂ lim infσa(T

∗
n).

If λ ∈ σa(T
∗)\σea(T ∗), then λ ∈ isoσa(T

∗) by Corollary 2.5. Consequently,
λ ∈ lim infσa(T

∗
n) i.e., λ ∈ lim infσ(T ∗

n) for all n by [18, Theorem IV. 3.16],
and there exists a sequence {λn}, λn ∈ σa(T

∗
n), such that λn converges to λ.

Evidently λ ∈ lim infσa(T
∗
n). Hence λ ∈ lim infσ(T ∗

n). Now by applying Lemma
2.7, we obtain the result.

Corollary 2.11. If {Tn} is a sequence in (p, k)−Q or (p, k)−QP which
converges in norm to T , then σ, σw and σb are continuous at T .
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Proof. Combining Theorem 2.10 with Lemma 2.8 and Lemma 2.9, we obtain
the result.

Let σs(T ) = {λ : T − λ is not surjective} denote the surjectivity spectrum
of T and let Φ+

−(H) = {λ : T −λ ∈ Φ−(H), ind(T −λ) ≥ 0}. Then the essential
surjectivity spectrum of T is the set σes(T ) = {λ : T − λ /∈ Φ+

−(H)}.

Corollary 2.12. If {Tn} is a sequence in (p, k)−Q or (p, k)−QP which
converges in norm to T , then σes is continuous at T .

Proof. Since T has SVEP by Lemma 2.2, σes(T ) = σea(T
∗) by [2, Theorem

3.65 (ii)]. Then by applying Lemma 2.9, we obtain the result.

Let K ⊂ B(H) denote the ideal of compact operators, B(H)/K the Calkin
algebra and let π : B(H) → B(H)/K denote the quotient map. Then B(H)/K
being a C∗ - algebra, there exists a Hilbert space H′ and an isometric ∗ -
isomorphism ν : B(H)/K → B(H′) such that the essential spectrum σe(T ) =
σ(π(T )) of T ∈ B(H) is the spectrum of ν ◦π(T ) ( ∈ B(H′)). In general, σe(T )
is not a continuous function of T .

Corollary 2.13. If {π(Tn)} is a sequence in (p, k) − Q or (p, k) − QP
which converges in norm to π(T ), then σe is continuous at T .

Proof. If Tn ∈ B(H) is essentially (p, k)−Q or (p, k)−QP, i.e., if π(Tn) ∈
(p, k)−Q or (p, k)−QP, and the sequence {Tn} converges in norm to T , then
ν ◦ π(T ) ∈ B(H′) is a point of continuity of σ by Theorem 2.10. Hence σe is
continuous at T , since σe(T ) = σ(ν ◦ π(T )).

LetH(σ(T )) denote the set of functions f that are non-constant and analytic
on a neighbourhood of σ(T ).

Lemma 2.14. Let T ∈ B(X) be an invertible (p, k)−QP has SVEP, then
ind(T − λ) ≤ 0 for every λ ∈ C such that T − λ is B-Fredholm.

Proof. T has SVEP by [24, Lemma 2.3]. Then T |M has SVEP for every
invariant subspaces M ⊂ X of T . From [4, Theorem 2.7], we know that if T −λ
is a B-Fredholm operator, then there exist T − λ invariant closed subspaces M
and N of X such that X = M ⊕ N , (T − λ)|M is a Fredholm operator with
SVEP and (T − λ)|N is a Nilpotent operator. Since ind(T − λ)|M ≤ 0 by [21,
Proposition 2.2], it follows that ind(T − λ) ≤ 0.
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