International Journal of Applied Mathematics

Volume 26 No. 5 2013, 565-573

ISSN: 1311-1728 (printed version); ISSN: 1314-8060 (on-line version)

doi: http://dx.doi.org/10.12732/ijam.v26i5.5

SPECTRAL CONTINUITY OF (p,k)-QUASIPOSINORMAL OPERATOR AND (p,k)-QUASIHYPONORMAL OPERATOR

D. Senthil Kumar¹, D. Kiruthika² §

1,2Post Graduate and Research Department of Mathematics Government Arts College Coimbatore, 641 018, Tamil Nadu, INDIA

Abstract: An operator $T \in B(\mathcal{H})$ is said to be (p,k)-quasiposinormal operator, if $T^{*k}(c^2(T^*T)^p - (TT^*)^p)T^k \geq 0$ for a positive integer 0 , some <math>c > 0 and a positive integer k. In this paper, we prove that, the (p,k) quasi-posinormal operator is a pole of resolvent of T^* . Then we prove that if $\{T_n\}$ is a sequence of operators in the class $(p,k) - \mathcal{Q}$ and $(p,k) - \mathcal{QP}$ which converges in the operator norm topology to an operator T in the same class, then the functions spectrum, Weyl spectrum, Browder spectrum and essential surjectivity spectrum are continuous at T.

AMS Subject Classification: 47A05, 47A10, 47B37 Key Words: Weyl's theorem, (p, k)-quasiposinormal operator, Riesz idempotent, generalized a-Weyl's theorem, B-Fredholm, B-Weyl

1. Introduction and Preliminaries

Let \mathcal{H} be an infinite dimensional complex Hilbert space and $B(\mathcal{H})$ denote the algebra of all bounded linear operators acting on \mathcal{H} . Every operator T can be decomposed into T=U|T| with a partial isometry U, where $|T|=\sqrt{T^*T}$. In [8], H.C. Rhaly Jr. introduced and studied posinormal operators. He showed a characterization of posinormality and spectral properties of posinormal operators. Moreover, he gave many fruitful examples of posinormal operators for the Casáro operator. As a further generalization of posinormal operators, M. Itoh [16] introduced p-posinormal operators and he proved that a p-posinormal

Received: October 2, 2013

© 2013 Academic Publications

[§]Correspondence author

operator is M-paranormal operator. An operator $T \in B(\mathcal{H})$ is positive, $T \geq 0$, if $(Tx,x) \geq 0$ for all $x \in \mathcal{H}$, and posinormal if there exists a positive $\lambda \in B(\mathcal{H})$ such that $TT^* = T^*\lambda T$. Here λ is called interrupter of T. In other words, an operator T is called posinormal if $TT^* \leq c^2T^*T$, where T^* is the adjoint of T and c > 0, see [8]. An operator T is said to be heminormal, if T is hyponormal and T^*T commutes with TT^* . An operator T is said to be p-posinormal if $(TT^*)^p \leq c^2(T^*T)^p$ for some c > 0. It is clear that 1-posinormal is posinormal. In [19], M. Y. Lee and S. H. Lee have studied a structure theorem and some properties for (p,k)-quasi-posinormal operators. They have proved that if T is invertible, then T is (p,k)-quasi-posinormal. Also T and T^* are (p,k)-quasi-posinormal for invertible T.

An operator T is said to be (p, k)-quasi-posinormal, if

$$T^{*k}(c^2(T^*T)^p - (TT^*)^p)T^k \ge 0,$$

where k is a positive integer, 0 and <math>c > 0. (p, k)-quasi-posinormal operated is denoted by $(p, k) - \mathcal{QP}$ a (p, 1)-quasi-posinormal is p-posinormal.

An operator $T \in B(\mathcal{H})$ is said to be (p,k)-quasihyponormal operator, denoted by $(p,k)-\mathcal{Q}$, for some $0 and integer <math>k \geq 1$ if $T^{*k}(|T|^{2p}-|T^*|^{2p})T^k \geq 0$. Evidently, a $(1,k)-\mathcal{Q}$ operator is k-quasihyponormal, a $(1,1)-\mathcal{Q}$ operator is quasihyponormal.

If $T \in B(\mathcal{H})$, we write N(T) and R(T) for null space and range of T, respectively. Let $\alpha(T) = \dim N(T) = \dim (T^{-1}(0))$, $\beta(T) = \dim N(T^*) = \dim (\mathcal{H}/T(\mathcal{H}))$, $\sigma(T)$ denote the spectrum and $\sigma_a(T)$ denote the approximate point spectrum. Then $\sigma(T)$ is a compact subset of the set \mathbb{C} of complex numbers. The function σ viewed as a function from $B(\mathcal{H})$ into the set of all compact subsets of \mathbb{C} , with its Hausdorff metric, is know to be an upper semi-continuous function [14, Problem 103], but it fails to be continuous [14, Problem 102]. Also we know that σ is continuous on the set of normal operators in $B(\mathcal{H})$ extended to hyponormal operators [14, Problem 105]. The continuity of σ on the set of quasihyponormal operators (in $B(\mathcal{H})$) has been proved by Erevenko and Djordjevic [10], the continuity of σ on the set of p-hyponormal has been proved by Duggal and Djordjevic [9], and the continuity of σ on the set of G_1 operators has been proved by Luecke [20].

An operator $T \in B(\mathcal{H})$ is called Fredholm, if it has closed range, finite dimensional null space and its range has finite co - dimension. The index of a Fredholm operator is given by $i(T) = \alpha(T) - \beta(T)$. The ascent of T, asc(T), is the least non-negative integer n such that $T^{-n}(0) = T^{-(n+1)}(0)$ and the descent of T, dsc(T), is the least non-negative integer n such that $T^n(\mathcal{H}) = T^{(n+1)}(\mathcal{H})$. We say that T is of finite ascent (resp., finite descent) if asc $(T - \lambda I) < \infty$ (resp.,

 $\operatorname{dsc}(T-\lambda I)<\infty$) for all complex numbers λ . T is said to be left semi-Fredholm (resp., right semi-Fredholm), $T\in\Phi_+(\mathcal{H})$ (resp., $T\in\Phi_-(\mathcal{H})$) if $T\mathcal{H}$ is closed and the deficiency index $\alpha(T)=\dim(T^{-1}(0))$ is finite (resp., the deficiency index $\beta(T)=\dim(\mathcal{H}\setminus T\mathcal{H})$ is finite); T is semi-Fredholm if it is either left semi-Fredholm or right semi-Fredholm, and T is Fredholm if it is both left and right semi-Fredholm. The semi-Fredholm index of T, $\operatorname{ind}(T)$, is the number $\operatorname{ind}(T)=\alpha(T)-\beta(T)$. T is called Weyl, if it is Fredholm of index zero and Browder if it is Fredholm of finite ascent and descent. Let $\mathbb C$ denote the set of complex numbers. The Weyl spectrum $\sigma_w(T)$ and the Browder spectrum $\sigma_b(T)$ of T are the sets $\sigma_w(T)=\{\lambda\in\mathbb C:T-\lambda \text{ is not Weyl}\}$ and $\sigma_b(T)=\{\lambda\in\mathbb C:T-\lambda \text{ is not Browder}\}$.

Let $\pi_0(T)$ denote the set of Riesz points of T (i.e., the set of $\lambda \in \mathbb{C}$ such that $T - \lambda$ is Fredholm of finite ascent and descent [7]) and let $\pi_{00}(T)$ and iso $\sigma(T)$ denotes the set of eigen values of T of finite geometric multiplicity and isolated points of the spectrum. The operator $T \in B(\mathcal{H})$ is said to satisfy Browder's theorem, if $\sigma(T) \setminus \sigma_w(T) = \pi_0(T)$ and T is said to satisfy Weyl's theorem if $\sigma(T) \setminus \sigma_w(T) = \pi_{00}(T)$. In [15], Weyl's theorem for T implies Browder's theorem for T, and Browder's theorem for T is equivalent to Browder's theorem for T^* .

Berkani [5] has called an operator $T \in B(X)$ as B-Fredholm if there exists a natural number n for which the induced operator $T_n: T^n(X) \to T^n(X)$ is Fredholm. We say that the B-Fredholm operator T has stable index if $\operatorname{ind}(T-\lambda)$ $\operatorname{ind}(T-\mu) \geq 0$ for every λ, μ in the B-Fredholm region of T.

The essential spectrum $\sigma_e(T)$ of $T \in B(\mathcal{H})$ is the set $\sigma_e(T) = \{\lambda \in \mathbb{C} : T - \lambda \text{ is not Fredholm}\}$. Let $\operatorname{acc}_{\sigma}(T)$ denote the set of all accumulation points of $\sigma(T)$, then $\sigma_e(T) \subseteq \sigma_w(T) \subseteq \sigma_b(T) \subseteq \sigma_e(T) \cup \operatorname{acc}_{\sigma}(T)$. Let $\pi_{a0}(T)$ be the set of $\lambda \in \mathbb{C}$ such that λ is an isolated point of $\sigma_a(T)$ and $0 < \alpha(T - \lambda) < \infty$, where $\sigma_a(T)$ denotes the approximate point spectrum of the operator T. Then $\pi_0(T) \subseteq \pi_{00}(T) \subseteq \pi_{a0}(T)$. We say that a-Weyl's theorem holds for T if

$$\sigma_{aw}(T) = \sigma_a(T) \backslash \pi_{a0}(T),$$

where $\sigma_{aw}(T)$ denotes the essential approximate point spectrum of T (i.e., $\sigma_{aw}(T) = \bigcap \{\sigma_a(T+K) : K \in K(\mathcal{H})\}$ with $K(\mathcal{H})$ denoting the ideal of compact operators on \mathcal{H}). Let $\Phi_+(\mathcal{H}) = \{T \in B(\mathcal{H}) : \alpha(T) < \infty \text{ and } T(\mathcal{H}) \text{ is closed}\}$ and $\Phi_-(\mathcal{H}) = \{T \in B(\mathcal{H}) : \beta(T) < \infty\}$ denote the semigroup of upper semi-Fredholm and lower semi-Fredholm operators in $B(\mathcal{H})$ and let $\Phi_+^-(\mathcal{H}) = \{T \in \Phi_+(\mathcal{H}) : \operatorname{ind}(T) \leq 0\}$. Then $\sigma_{aw}(T)$ is the complement in \mathbb{C} of all those λ for which $(T - \lambda) \in \Phi_+^-(\mathcal{H})$, see [22]. The concept of a-Weyl's theorem was introduced by Rakocvic [23]. The concept states that a-Weyl's theorem for T \Rightarrow Weyl's theorem for T, but the converse is generally false. Let $\sigma_{ab}(T)$ denote

the Browder essential approximate point spectrum of T.

$$\sigma_{ab}(T) = \bigcap \{ \sigma_a(T+K) : TK = \mathbf{K} \ \mathbf{T} \ \text{and} \ \mathbf{K} \in K(\mathcal{H}) \}$$
$$= \{ \lambda \in \mathbb{C} : T - \lambda \notin \Phi_+^-(\mathcal{H}) \text{ or } \operatorname{asc}(\mathbf{T} - \lambda) = \infty \},$$

then $\sigma_{aw}(T) \subseteq \sigma_{ab}(T)$. We say that T satisfies a Browder's theorem, if $\sigma_{ab}(T) = \sigma_{aw}(T)$, see [22].

An operator $T \in B(\mathcal{H})$ has the single valued extension property at $\lambda_0 \in \mathbb{C}$, if for every open disc D_{λ_0} centered at λ_0 the only analytic function $f: D_{\lambda_0} \to \mathcal{H}$ which satisfies

$$(T-\lambda)f(\lambda)=0$$
 for all $\lambda \in D_{\lambda_0}$

is the function $f \equiv 0$. Trivially, every operator T has SVEP at points of the resolvent $\rho(T) = \mathbb{C}/\sigma(T)$; also T has SVEP at $\lambda \in \mathrm{iso}\sigma(T)$. We say that T has SVEP if it has SVEP at every $\lambda \in \mathbb{C}$. In this paper, we prove that the continuity of the set theoretic functions spectrum, Weyl spectrum, Browder spectrum and essential surjectivity spectrum on the classes consisting of (p,k) -quasihyponormal operators and (p,k) - quasi-posinormal operators. Note that if an operator T has finite ascent, then it has SVEP and $\alpha(T-\lambda) \leq \beta(T-\lambda)$ for all λ [2, Theorem 3.8 and 3.4]. For a subset S of the set of complex numbers, let $\overline{S} = \{\overline{\lambda} : \lambda \in S\}$ where λ denotes the complex number and $\overline{\lambda}$ denotes the conjugate.

2. Main Results

Lemma 2.1. Let $T \in (p,k)$ -quasiposinormal operator. If $\overline{\lambda} \in \pi_{00}(T^*)$, then it is a pole of the resolvent of T^* .

Proof. If $0 \neq \overline{\lambda} \in \pi_{00}(T^*)$, then $\lambda \in iso\sigma(T) \Rightarrow \lambda$ is a normal of eigen value of T ([17], Lemma 2.3) and hence a simple pole of the resolvent of T ([17], Cor. 2.8). If instead, $\lambda = 0$ then dim $\ker T^* < \infty \Rightarrow \operatorname{ran} T^*$ is closed and hence $T^* \in \Phi_+(\mathcal{H})$ implies $T \in \Phi_-(\mathcal{H})$. Since both T and T^* have SVEP at 0, it follows that, $asc(T) = dsc(T) < \infty$ (See [1], Theorem 2.3). Hence 0 is a pole of the resolvent of T implies 0 is the pole of the resolvent of T^*

Lemma 2.2. (i) If
$$T \in (p, k) - Q$$
, then $asc(T - \lambda) \le k$ for all λ .

(ii) If $T \in (p, k) - \mathcal{QP}$, then T has SVEP.

П

Proof. (i) Proof of (i) is [13, Page 146] or [25].

(ii) Proof of (ii) is [24, Lemma 2.3].

Lemma 2.3. If $T \in (p, k) - \mathcal{Q} \cup (p, k) - \mathcal{QP}$ and $\lambda \in iso\sigma(T)$, then λ is a pole of the resolvent of T.

Proof. Proof of this lemma is [25, Theorem 6] and [17, Corollary 2.8]. \square

Lemma 2.4. If $T \in (p, k) - \mathcal{Q} \cup (p, k) - \mathcal{QP}$, then T^* satisfies a-Weyl's theorem.

Proof. If $T \in (p,k) - \mathcal{Q}$, then T has SVEP, which implies that $\sigma(T^*) = \sigma_a(T^*)$ by [2, Corollary 2.45]. Then T satisfies Weyl's theorem i.e., $\sigma(T) \setminus \sigma_w(T) = \pi_0(T) = \pi_{00}(T)$ by [13, Corollary 3.7]. Since $\pi_{00}(T) = \overline{\pi_{00}(T^*)} = \overline{\pi_{a0}(T^*)}$, $\sigma(T) = \overline{\sigma(T^*)} = \overline{\sigma_a(T^*)}$ and $\sigma_w(T) = \overline{\sigma_w(T^*)} = \overline{\sigma_{ea}(T^*)}$ by [3, Theorem 3.6(ii)], $\sigma_a(T^*) \setminus \sigma_{ea}(T^*) = \pi_{a0}(T^*)$. Hence if $T \in (p,k) - \mathcal{Q}$, then T^* satisfies a-Weyl's theorem.

If $T \in (p,k) - \mathcal{QP}$, then by [24, Theorem 3.4], T^* satisfies a-Weyl's theorem.

Corollary 2.5. If $T \in (p, k) - \mathcal{Q} \cup (p, k) - \mathcal{Q} \mathcal{P}$, then $\lambda \in \sigma_a(T^*) \setminus \sigma_{ea}(T^*) \Rightarrow \lambda \in iso\sigma_a(T^*)$.

Lemma 2.6. If $T \in (p, k) - \mathcal{Q} \cup (p, k) - \mathcal{QP}$, then $\operatorname{asc}(T - \lambda) < \infty$ for all λ .

Proof. Since $T - \lambda$ is lower semi-Fredholm, it has SVEP. We know that from [2, Theorem 3.16] the SVEP implies finite ascent. Hence the proof follows. \square

Lemma 2.7. [6, Proposition 3.1] If σ is continuous at a $T^* \in B(\mathcal{H})$, then σ is continuous at T.

Lemma 2.8. [12, Theorem 2.2] If an operator $T \in B(\mathcal{H})$ has SVEP at points $\lambda \notin \sigma_w(T)$, then σ is continuous at $T \Leftrightarrow \sigma_w$ is continuous at $T \Leftrightarrow \sigma_b$ is continuous at T.

Lemma 2.9. If $\{T_n\}$ is a sequence in $(p,k) - \mathcal{Q}$ or $(p,k) - \mathcal{QP}$ which converges in norm to T, then T^* is a point of continuity of σ_{ea} .

Proof. We have to prove that the function σ_{ea} is both upper semi-continuous and lower semi-continuous at T^* . But by [11, Theorem 2.1], we have that the function σ_{ea} is upper semi-continuous at T^* . So we have to prove that σ_{ea} is lower semi-continuous at T^* i.e., $\sigma_{ea}(T^*) \subset \lim \inf \sigma_{ea}(T_n^*)$. Assume the contradiction that σ_{ea} is not lower semi - continuous at T^* . Then there exists an $\epsilon > 0$, an integer n_0 , a $\lambda \in \sigma_{ea}(T^*)$ and an ϵ -neighbourhood $(\lambda)_{\epsilon}$ of λ such that $\sigma_{ea}(T_n^*) \cap (\lambda)_{\epsilon} = \emptyset$ for all $n \geq n_0$. Since $\lambda \notin \sigma_{ea}(T_n^*)$ for all $n \geq n_0$ implies $T_n^* - \lambda \in \Phi_+^-(\mathcal{H})$ for all $n \geq n_0$, the following implications hold:

$$ind(T_n^* - \lambda) \leq 0, \alpha(T_n^* - \lambda) < \infty \text{ and } (T_n^* - \lambda)\mathcal{H} \text{ is closed}$$

$$\Rightarrow ind(T_n - \overline{\lambda}) \geq 0, \beta(T_n - \overline{\lambda}) < \infty$$

$$\Rightarrow ind(T_n - \overline{\lambda}) = 0, \alpha(T_n - \overline{\lambda}) = \beta(T_n - \overline{\lambda}) < \infty$$
(Since $T_n \in (p, k) - \mathcal{Q} \cup (p, k) - \mathcal{QP} \Rightarrow ind(T_n - \overline{\lambda}) \leq 0$
by Lemma 2.2 and Lemma 2.6)

for all $n \geq n_0$. The continuity of the index implies that $\operatorname{ind}(T - \overline{\lambda}) = \lim_{n \to \infty} \operatorname{ind}(T_n - \overline{\lambda}) = 0$, and hence that $(T - \overline{\lambda})$ is Fredholm with $\operatorname{ind}(T - \overline{\lambda}) = 0$. But then $T^* - \lambda$ is Fredholm with $\operatorname{ind}(T^* - \lambda) = 0 \Rightarrow T^* - \lambda \in \Phi_+^-(\mathcal{H})$, which is a contradiction. Therefore σ_{ea} is lower semi - continuous at T^* . Hence the proof follows. \square

Theorem 2.10. If $\{T_n\}$ is a sequence in $(p,k) - \mathcal{Q}$ or $(p,k) - \mathcal{QP}$ which converges in norm to T, then σ is continuous at T.

Proof. Since T has SVEP by Lemma 2.2, $\sigma(T^*) = \sigma_a(T^*)$. Evidently, it is enough if we prove that $\sigma_a(T^*) \subset \liminf \sigma_a(T^*)$ for every sequence $\{T_n\}$ of operators in $(p,k) - \mathcal{Q}$ or $(p,k) - \mathcal{Q}\mathcal{P}$ such that T_n converges in norm to T. Let $\lambda \in \sigma_a(T^*)$. Then either $\lambda \in \sigma_{ea}(T^*)$ or $\lambda \in \sigma_a(T^*) \setminus \sigma_{ea}(T^*)$.

If $\lambda \in \sigma_{ea}(T^*)$, then the proof follows, since

$$\sigma_{ea}(T^*) \subset \lim \inf \sigma_{ea}(T_n^*) \subset \lim \inf \sigma_a(T_n^*).$$

If $\lambda \in \sigma_a(T^*) \setminus \sigma_{ea}(T^*)$, then $\lambda \in \text{iso}\sigma_a(T^*)$ by Corollary 2.5. Consequently, $\lambda \in \text{lim inf}\sigma_a(T_n^*)$ i.e., $\lambda \in \text{lim inf}\sigma(T_n^*)$ for all n by [18, Theorem IV. 3.16], and there exists a sequence $\{\lambda_n\}$, $\lambda_n \in \sigma_a(T_n^*)$, such that λ_n converges to λ . Evidently $\lambda \in \text{lim inf}\sigma_a(T_n^*)$. Hence $\lambda \in \text{lim inf}\sigma(T_n^*)$. Now by applying Lemma 2.7, we obtain the result.

Corollary 2.11. If $\{T_n\}$ is a sequence in (p,k) - Q or (p,k) - QP which converges in norm to T, then σ , σ_w and σ_b are continuous at T.

Proof. Combining Theorem 2.10 with Lemma 2.8 and Lemma 2.9, we obtain the result. \Box

Let $\sigma_s(T) = \{\lambda : T - \lambda \text{ is not surjective}\}\$ denote the surjectivity spectrum of T and let $\Phi_-^+(\mathcal{H}) = \{\lambda : T - \lambda \in \Phi_-(\mathcal{H}), \text{ ind}(T - \lambda) \geq 0\}$. Then the essential surjectivity spectrum of T is the set $\sigma_{es}(T) = \{\lambda : T - \lambda \notin \Phi_-^+(\mathcal{H})\}$.

Corollary 2.12. If $\{T_n\}$ is a sequence in (p,k) - Q or (p,k) - QP which converges in norm to T, then σ_{es} is continuous at T.

Proof. Since T has SVEP by Lemma 2.2, $\sigma_{es}(T) = \sigma_{ea}(T^*)$ by [2, Theorem 3.65 (ii)]. Then by applying Lemma 2.9, we obtain the result.

Let $\mathcal{K} \subset B(\mathcal{H})$ denote the ideal of compact operators, $B(\mathcal{H})/\mathcal{K}$ the Calkin algebra and let $\pi: B(\mathcal{H}) \to B(\mathcal{H})/\mathcal{K}$ denote the quotient map. Then $B(\mathcal{H})/\mathcal{K}$ being a C^* - algebra, there exists a Hilbert space \mathcal{H}_t and an isometric * - isomorphism $\nu: B(\mathcal{H})/\mathcal{K} \to B(\mathcal{H}_t)$ such that the essential spectrum $\sigma_e(T) = \sigma(\pi(T))$ of $T \in B(\mathcal{H})$ is the spectrum of $\nu \circ \pi(T)$ ($\in B(\mathcal{H}_t)$). In general, $\sigma_e(T)$ is not a continuous function of T.

Corollary 2.13. If $\{\pi(T_n)\}$ is a sequence in (p,k) - Q or (p,k) - QP which converges in norm to $\pi(T)$, then σ_e is continuous at T.

Proof. If $T_n \in B(\mathcal{H})$ is essentially $(p,k) - \mathcal{Q}$ or $(p,k) - \mathcal{QP}$, i.e., if $\pi(T_n) \in (p,k) - \mathcal{Q}$ or $(p,k) - \mathcal{QP}$, and the sequence $\{T_n\}$ converges in norm to T, then $\nu \circ \pi(T) \in B(\mathcal{H}_{\ell})$ is a point of continuity of σ by Theorem 2.10. Hence σ_e is continuous at T, since $\sigma_e(T) = \sigma(\nu \circ \pi(T))$.

Let $\mathcal{H}(\sigma(T))$ denote the set of functions f that are non-constant and analytic on a neighbourhood of $\sigma(T)$.

Lemma 2.14. Let $T \in B(X)$ be an invertible $(p,k) - \mathcal{QP}$ has SVEP, then $ind(T - \lambda) \leq 0$ for every $\lambda \in \mathcal{C}$ such that $T - \lambda$ is B-Fredholm.

Proof. T has SVEP by [24, Lemma 2.3]. Then $T|_M$ has SVEP for every invariant subspaces $M \subset X$ of T. From [4, Theorem 2.7], we know that if $T - \lambda$ is a B-Fredholm operator, then there exist $T - \lambda$ invariant closed subspaces M and N of X such that $X = M \oplus N$, $(T - \lambda)|_M$ is a Fredholm operator with SVEP and $(T - \lambda)|_N$ is a Nilpotent operator. Since $\operatorname{ind}(T - \lambda)|_M \leq 0$ by [21, Proposition 2.2], it follows that $\operatorname{ind}(T - \lambda) \leq 0$.

References

- [1] P. Aiena, Classes of operators satisfying a Weyl's theorem, *Studia Math.*, **169**, No 2 (2005), 105-122.
- [2] P. Aiena, Fredholm and Local Spectral Theory with Applications to Multipliers, Kluwer Acad. Pub., 2004.
- [3] C. Apostol, L.A. Fialkow, D.A. Herrero, D. Voiculescu, *Approximation of Hilbert Space Operators*, Vol. II, Research Notes in Mathematics., 102, Pitman, Boston (1984).
- [4] M. Berkani, On a class of quasi-Fredholm operators, *Inter. Equat. Operator Theory.*, **34** (1999), 244-249.
- [5] M. Berkani, Index of B-Fredholm operators and generalization of the Weyl theorem, *Proc. Amer. Math. Soc.*, **130** (2002), 1717-1723.
- [6] L. Burlando, Noncontinuity of the adjoint of an operator, *Proc. Amer. Math. Soc.*, **128** (2000), 479-486.
- [7] S.R. Caradus, W.E. Pfaffenberger, Y. Bertram, Calkin Algebras and Algebras of Operators on Banach Spaces, Marcel Dekker, New York, 1974.
- [8] H. Crawford Rhaly, Posinormal operators, J. Math. Soc. Japan., 46 (1994), 587-605.
- [9] S.V. Djordjevic, On the continuity of the essential approximate point spectrum, Facta Math. Nis., 10 (1995), 69-73.
- [10] S.V. Djordjevic, Continuity of the essential spectrum in the class of quasi-hyponormal operators, *Vesnik Math.*, **50** (1998), 71-74.
- [11] S.V. Djordjevic, B.P. Duggal, Weyl's theorem and continuity of spectra in the class of p-hyponormal operators, *Studia Math.*, **143** (2000), 23-32.
- [12] S.V. Djordjevic, Y.M. Han, Browder's theorem and spectral continuity, *Glasgow Math. J.*, **42** (2000), 479-486.
- [13] B.P. Duggal, Riesz projections for a class of Hilbert space operators, *Linear Algebra Appl.*, **407** (2005), 140-148.
- [14] P.R. Halmos, A Hilbert Space Problem Book, Graduate Texts in Mathematics, Springer-Verlag, New York, 1982.

- [15] R.E. Harte, W.Y. Lee, Another note on a-Weyl's theorem, Trans. Amer. Math. Soc., 349 (1997), 2115-2124.
- [16] Masuo Itoh, Characterizeation of posinormal operators, Nihonkai Math. J. 11 (2000), 97-101.
- [17] S. Mecheri, D. Senthilkumar, D. Kiruthika, Tensor product and Riesz idempotent for (p, k)-quasiposinormal operators, *Communicated*.
- [18] T. Kato, Perturbation Theory for Linear Operators, Springer-Verlag, Berlin, 1966.
- [19] M.Y. Lee, S.H. Lee, On (p, k)-quasiposinormal operators, J. Appl. Math. and Computing., 19, No 1-2 (2005), 573-578.
- [20] G.R. Luecke, A note on spectral continuity and spectral properties of essentially G_1 operators, $Pac.\ J.\ Math.$, **69** (1977), 141-149.
- [21] Oudghiri, Weyl's theorem and Browder's theorem for operators satisfying the SVEP, *Studia Mathematica*, **163** (2004), 85-101.
- [22] V. Rakocevic, On the essential approximate point spectrum, II, *Mat. Vesnik*, **36**, No 1 (1984), 89-97.
- [23] V. Rakocevic, Operators obeying a-Weyl's theorem, Rev. Roumaine Math. Pures Appl., 34 (1989), 915-919.
- [24] D. Senthilkumar, P. Maheswari Naik, D. Kiruthika, Weyl type theorem and spectrum for (p, k)-quasiposinormal operators, *Banach J. Math. Anal.* 7, No 2 (2013), 30-41.
- [25] K. Tanahashi, A. Uchiyama, M. Cho, Isolated points of spectrum of (p, k)-quasihyponormal operators, *Linear Alg. Appl.*, **382** (2004), 221-229.