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Abstract: An operator T' € B(H) is said to be (p, k)-quasiposinormal op-
erator, if T**(c2(T*T)P — (TT*)P)T* > 0 for a positive integer 0 < p < 1,
some ¢ > 0 and a positive integer k. In this paper, we prove that, the (p,k)
quasi-posinormal operator is a pole of resolvent of T*. Then we prove that if
{T}.} is a sequence of operators in the class (p,k) — Q and (p, k) — QP which
converges in the operator norm topology to an operator 7" in the same class,
then the functions spectrum, Weyl spectrum, Browder spectrum and essential
surjectivity spectrum are continuous at 7.
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1. Introduction and Preliminaries

Let H be an infinite dimensional complex Hilbert space and B(#) denote the
algebra of all bounded linear operators acting on H. Every operator 17" can be
decomposed into T=U|T| with a partial isometry U, where |T|=vT*T. In [8],
H.C. Rhaly Jr. introduced and studied posinormal operators. He showed a
characterization of posinormality and spectral properties of posinormal oper-
ators. Moreover, he gave many fruitful examples of posinormal operators for
the Casédro operator. As a further generalization of posinormal operators, M.
Itoh [16] introduced p-posinormal operators and he proved that a p-posinormal
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operator is M-paranormal operator. An operator T' € B(H) is positive, T' > 0,
if (Tx,z) > 0 for all x € H, and posinormal if there exists a positive A € B(H)
such that T'T* = T*AT. Here ) is called interrupter of T'. In other words, an
operator T is called posinormal if TT* < ¢*T*T, where T* is the adjoint of T
and ¢ > 0, see [8]. An operator T is said to be heminormal, if 7" is hyponor-
mal and T*T commutes with TT*. An operator T is said to be p-posinormal
if (TT*)? < (T*T)P for some ¢ > 0. It is clear that 1-posinormal is posi-
normal. In [19], M. Y. Lee and S. H. Lee have studied a structure theorem
and some properties for (p, k)-quasi-posinormal operators. They have proved
that if 7' is invertible, then T is (p, k)-quasiposinormal. Also T" and T™ are
(p, k)-quasi-posinormal for invertible 7.
An operator T is said to be (p, k)-quasi-posinormal, if

T*F((T*T) — (TT*P)T* > 0,

where k is a positive integer, 0 < p < 1 and ¢ > 0. (p, k)-quasi-posinormal
operated is denoted by (p, k) — QP a (p, 1)-quasi-posinormal is p-posinormal.

An operator T' € B(#H) is said to be (p, k)-quasihyponormal operator, de-
noted by (p,k) — Q, for some 0 < p < 1 and integer k > 1 if T**(|T|? —
|T*|>))T* > 0. Evidently, a (1,k) — Q operator is k-quasihyponormal, a
(1,1) — Q operator is quasihyponormal.

If T € B(H), we write N(T') and R(T") for null space and range of T
respectively. Let o(T) = dimN(T) = dim (T~1(0)), 3(T) = dimN(T*) = dim
(H/T(H)), o(T) denote the spectrum and o,(7") denote the approximate point
spectrum. Then o(T') is a compact subset of the set C of complex numbers.
The function o viewed as a function from B(#) into the set of all compact
subsets of C, with its Hausdorff metric, is know to be an upper semi-continuous
function [14, Problem 103], but it fails to be continuous [14, Problem 102].
Also we know that o is continuous on the set of normal operators in B(H)
extended to hyponormal operators [14, Problem 105]. The continuity of o on
the set of quasihyponormal operators (in B(#)) has been proved by Erevenko
and Djordjevic [10], the continuity of o on the set of p-hyponormal has been
proved by Duggal and Djordjevic [9], and the continuity of o on the set of G
- operators has been proved by Luecke [20].

An operator T' € B(#) is called Fredholm, if it has closed range, finite
dimensional null space and its range has finite co - dimension. The index of a
Fredholm operator is given by i(T') = «(T") — S(T"). The ascent of T', asc(T), is
the least non-negative integer n such that 7-"(0) = T~ "*+1(0) and the descent
of T, dsc(T'), is the least non-negative integer n such that T"(H) = T+ (H).
We say that T is of finite ascent (resp., finite descent) if asc(T'—\I) < oo (resp.,
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dsc(T'—AI) < o0) for all complex numbers A. T is said to be left semi-Fredholm
(resp., right semi-Fredholm), T' € ®(H) (resp., T' € ®_(H)) if TH is closed
and the deficiency index a(T) = dim(7~1(0)) is finite (resp., the deficiency
index S(T') = dim(H\T'H) is finite); T" is semi-Fredholm if it is either left semi-
Frdholm or right semi-Fredholm, and T is Fredholm if it is both left and right
semi-Fredholm. The semi-Fredholm index of 7', ind(7'), is the number ind(7’)
= o(T) — B(T). T is called Weyl, if it is Fredholm of index zero and Browder
if it is Fredholm of finite ascent and descent. Let C denote the set of complex
numbers. The Weyl spectrum o,,(7") and the Browder spectrum o,(7") of T are
the sets 0, (T) = {A € C: T — X is not Weyl} and 0p(T) = {A € C: T — \is
not Browder}.

Let mo(T") denote the set of Riesz points of T (i.e., the set of A € C such that
T — X is Fredholm of finite ascent and descent [7]) and let moo(7") and isoo (1)
denotes the set of eigen values of T of finite geometric multiplicity and isolated
points of the spectrum. The operator T' € B(H) is said to satisfy Browder’s
theorem, if o(T)\ow(T) = mo(T) and T is said to satisfy Weyl’s theorem if
o(T)\ow(T') = moo(T"). In [15], Weyl’s theorem for 7" implies Browder’s theorem
for T', and Browder’s theorem for T is equivalent to Browder’s theorem for 7.

Berkani [5] has called an operator 7' € B(X) as B-Fredholm if there exists
a natural number n for which the induced operator T,, : T"(X) — T™(X) is
Fredholm. We say that the B-Fredholm operator T" has stable index if ind (7'—\)
ind(7"— p) > 0 for every A, p in the B-Fredholm region of T'.

The essential spectrum o.(T") of T € B(H) is theset 0.(T) ={A € C: T—\
is not Fredholm}. Let acco(T') denote the set of all accumulation points of
o(T), then 0.(T) C 0,(T) C 0p(T) C 0e(T) Uacco(T). Let mao(T") be the set
of A € C such that A is an isolated point of 0,(7") and 0 < a(T — \) < oo,
where 0,(T') denotes the approximate point spectrum of the operator 7. Then
m0(T") € moo(T) C mao(T). We say that a-Weyl’s theorem holds for T if

Oaqw (T) = Oq (T)\Trao (T) )

where 04,(T) denotes the essential approximate point spectrum of T (i.e.,
Oaw(T) = (oo (T + K) : K € K(H)} with K(H) denoting the ideal of com-
pact operators on H). Let & (H) = {T € B(H) : a(T) < o0 and T(H) is
closed} and ®_(H) = {T € B(H) : (1) < oo} denote the semigroup of upper
semi-Fredholm and lower semi-Fredholm operators in B(#H) and let ® (H) =
{T € &4 (H) : ind(T") < 0}. Then 04,(T) is the complement in C of all those
A for which (T'— X) € @ (H), see [22]. The concept of a-Weyl’s theorem was
introduced by Rakocvic [23]. The concept states that a-Weyl’s theorem for 7'
= Weyl’s theorem for T', but the converse is generally false. Let o,,(T) denote
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the Browder essential approximate point spectrum of 7T'.

oap(T) = {oa(T+ K): TK =K T and K € K(H)}
={AeC:T-XN¢g > (H) or asc(T — \) = o0},

then 04, (T) C 0g(T). We say that T satisfies a Browder’s theorem, if o4,(T")
= oauw(T), see [22].

An operator T' € B(#H) has the single valued extension property at Ag € C,
if for every open disc D), centered at A\ the only analytic function f : Dy, = H
which satisfies

(T = X\) f(A\)=0 for all A € Dy,

is the function f = 0. Trivially, every operator T has SVEP at points of the
resolvent p(T') = C/o(T); also T has SVEP at A\ € isoo(T"). We say that T
has SVEP if it has SVEP at every A € C. In this paper, we prove that the
continuity of the set theoretic functions spectrum, Weyl spectrum, Browder
spectrum and essential surjectivity spectrum on the classes consisting of (p, k) -
quasihyponormal operators and (p, k) - quasi-posinormal operators. Note that
if an operator T' has finite ascent, then it has SVEP and o(T — \) < (T — \)
for all A [2, Theorem 3.8 and 3.4]. For a subset S of the set of complex numbers,
let S = {\: )\ € S} where A denotes the complex number and A denotes the
conjugate.

2. Main Results

Lemma 2.1. Let T € (p, k)-quasiposinormal operator. If X € my(T*),
then it is a pole of the resolvent of T*.

Proof. 1f 0 # X € moo(T™), then \ € isoo(T) = ) is a normal of eigen value
of T ([17], Lemma 2.3) and hence a simple pole of the resolvent of 7' ([17], Cor.
2.8). If instead, A = 0 then dim ker7* < oo = ran T™ is closed and hence
T* € &, (H) implies T € ®_(H). Since both T" and 7™ have SVEP at 0, it
follows that, asc(T) = dsc(T) < oo (See [1], Theorem 2.3). Hence 0 is a pole
of the resolvent of T" implies 0 is the pole of the resolvent of T™ U

Lemma 2.2. (i) If T € (p,k) — Q, then asc(T — \) < k for all \.
(ii)) If T € (p, k) — QP, then T has SVEP.
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Proof. (i) Proof of (i) is [13, Page 146] or [25].
(ii) Proof of (ii) is [24, Lemma 2.3]. O

Lemma 2.3. IfT € (p,k) — QU (p, k) — QP and X € isoo(T'), then \ is a
pole of the resolvent of T.

Proof. Proof of this lemma is [25, Theorem 6] and [17, Corollary 2.8]. O

Lemma 2.4. IfT € (p,k) — QU (p, k) — QP, then T* satisfies a-Weyl’s
theorem.

Proof. If T' € (p,k) — Q, then T has SVEP, which implies that o(7%) =
0q(T*) by [2, Corollary 2.45]. Then T satisfies Weyl’s theorem i.e., o(T")\ow, (T
= mo(T") = moo(T") by [13, Corollary 3.7]. Since moo(T) = moo(1T*) = mao(T*),
o(T) =o(T*) = 04,(T*) and 0, (T') = 0w(T*) = 0ea(T*) by [3, Theorem 3.6(ii)],
0a(T*)N\Oea(T*) = mao(T™). Hence if T € (p, k) — Q, then T satisfies a-Weyl’s
theorem.

If T € (p, k)—QP, then by [24, Theorem 3.4], T* satisfies a-Weyl’s theorem.

O

Corollary 2.5. IfT € (p,k)—QU(p,k)—QP, then A € 04(T*)\oeo(T*) =
A € isoog(T™).

Lemma 2.6. IfT € (p,k) — QU (p,k) — QP, then asc(T — \) < oo for all
A

Proof. Since T'— ) is lower semi-Fredholm, it has SVEP. We know that from
[2, Theorem 3.16] the SVEP implies finite ascent. Hence the proof follows. [

Lemma 2.7. [6, Proposition 3.1] If o is continuous at a T* € B(H), then
o is continuous at T'.

Lemma 2.8. [12, Theorem 2.2] If an operator T' € B(H) has SVEP at
points A\ ¢ o,(T'), then o is continuous at T' < o, is continuous at T' < o} is
continuous at T'.

Lemma 2.9. If{T,} is a sequence in (p,k) — Q or (p,k) — QP which
converges in norm to T, then T* is a point of continuity of ce,.
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Proof. We have to prove that the function ., is both upper semi-continuous
and lower semi-continuous at 7. But by [11, Theorem 2.1], we have that the
function o., is upper semi-continuous at 7. So we have to prove that o,
is lower semi-continuous at 7™ i.e., 0.,(7T*) C lim info.,(7;). Assume the
contradiction that o, is not lower semi - continuous at 7%. Then there exists
an € > 0, an integer ng, a A € 0e(7™) and an e-neighbourhood (\)e of A such
that 0eq(T7F) N (N)e = 0 for all n > ng. Since A ¢ 0¢q(T)F) for all n > ng implies
Ty — X e @ (H) for all n > ng, the following implications hold:

ind(T; — X) <0,a(Ty — \) < oo and (T,, — A\)H is closed
= ind(T,, — \) > 0,B8(T, — ) < o0
= ind(T,, — \) = 0,a(T}, — \) = B(T,, — \) < o0
(Since T}, € (p,k) — QU (p, k) — QP = ind(T,, — \) <0
by Lemma 2.2 and Lemma 2.6)

for all n > ng. The continuity of the index implies that ind(7—\) = 1i_>m ind(7,,—
n—oo

A) = 0, and hence that (T — ) is Fredholm with ind(7—\) = 0. But then 7% —\
is Fredholm with ind(7* — ) = 0 = 7™ — A € ® (H), which is a contradiction.
Therefore o, is lower semi - continuous at T*. Hence the proof follows. O

Theorem 2.10. If{T,} is a sequence in (p,k) — Q or (p, k) — QP which
converges in norm to T, then o is continuous at 1.

Proof. Since T has SVEP by Lemma 2.2, o(T"*) = 0,(T*). Evidently, it
is enough if we prove that o,(7™) C lim info, (7)) for every sequence {T,,} of
operators in (p, k) — Q or (p, k) — QP such that T;, converges in norm to T'. Let
A € 04(T%). Then either A € o¢o(T7) or A € 04(T7)\Oea(T™).

If A € 0cq(T%), then the proof follows, since

Oea(T™) C lim infoeq (7)) C lim info,(T))).

If A€ 0o(T*)\0ea(T™), then X € isoo,(T™*) by Corollary 2.5. Consequently,
A € lim info, (7)) ie., A € lim info(T}) for all n by [18, Theorem IV. 3.16],
and there exists a sequence {\,}, A, € 04(T)), such that A, converges to A.
Evidently A € lim info,(7;). Hence A € lim info(7};). Now by applying Lemma
2.7, we obtain the result. U

Corollary 2.11. If{T,} is a sequence in (p,k) — Q or (p, k) — QP which
converges in norm to T, then o, o,, and o} are continuous at T
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Proof. Combining Theorem 2.10 with Lemma 2.8 and Lemma 2.9, we obtain
the result. O

Let 04(T) = {\: T — X is not surjective} denote the surjectivity spectrum
of T and let @ (H) = {\: T— X € ®_(H), ind(T —\) > 0}. Then the essential
surjectivity spectrum of T is the set o.5(T) = {\: T — X ¢ &1 (H)}.

Corollary 2.12. If{T,} is a sequence in (p,k) — Q or (p, k) — QP which
converges in norm to T, then o.s is continuous at T

Proof. Since T has SVEP by Lemma 2.2, 0.5(T") = 0¢q(T™) by [2, Theorem
3.65 (ii)]. Then by applying Lemma 2.9, we obtain the result. O

Let K C B(H) denote the ideal of compact operators, B(H)/K the Calkin
algebra and let 7 : B(H) — B(H)/K denote the quotient map. Then B(H)/K
being a C* - algebra, there exists a Hilbert space H, and an isometric * -
isomorphism v : B(H)/K — B(H,) such that the essential spectrum o.(T") =
o(m(T)) of T € B(H) is the spectrum of von(T) ( € B(H,)). In general, o.(T)
is not a continuous function of 7.

Corollary 2.13. If {n(T,)} is a sequence in (p,k) — Q or (p,k) — QP
which converges in norm to 7(T), then o, is continuous at T'.

Proof. If T,, € B(H) is essentially (p,k) — Q or (p, k) — QP, i.e., if n(T},) €
(p, k) — Q or (p,k) — QP, and the sequence {T,,} converges in norm to 7', then
vom(T) € B(H,) is a point of continuity of ¢ by Theorem 2.10. Hence o, is
continuous at 7', since o.(T) = o(v o (T)). O

Let H(o(T')) denote the set of functions f that are non-constant and analytic
on a neighbourhood of (7).

Lemma 2.14. Let T' € B(X) be an invertible (p, k) — QP has SVEP, then
ind(T — X\) <0 for every A € C such that T — X is B-Fredholm.

Proof. T has SVEP by [24, Lemma 2.3]. Then T'|); has SVEP for every
invariant subspaces M C X of T'. From [4, Theorem 2.7], we know that if 7'— X
is a B-Fredholm operator, then there exist T'— A invariant closed subspaces M
and N of X such that X = M & N, (T — \)|a is a Fredholm operator with
SVEP and (T" — \)|n is a Nilpotent operator. Since ind(7"— A)|[ys < 0 by [21,
Proposition 2.2], it follows that ind(7T" — \) < 0. O
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