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Abstract: This paper analyzes the dynamic of the spray system that consists
of a spray tower mounted on trailer and his main contribution was to consider
a gap at the junction point between trailer and spray tower. The analysis of
the dynamic stability of the system, especially the spray tower, is of fundamen-
tal importance because the mechanical vibrations of the system can affect the
quality and efficiency of application during the work in the field. The mathe-
matical model of this agricultural implement has three degrees of freedom and,
with periodic vibrations at the junction, the system of differential equations
is nonlinear, second-order with time-periodic coefficients. For the analysis of
the problem, we used a technique based on the Chebyshev polynomial expan-
sion, the iterative Picard and transformation of Lyapunov-Floquet (LF). In the
numerical simulations, we did the phase planes and the diagram of stability,
varying the torsional stiffness, the amplitude and the frequency of vibration in
the joint point. We verified that there is instability in the system to some set
parameters, which can produce chaotic motions in the spray tower.
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1. Introduction

The application of chemical pesticides to control pests, diseases and weeds is
a common practice in industrial cultivars of medium and large companies. In
general, the application of defense is performed with the aid of an airblast
sprayer, which travels between the plants traction for a tractor, so that the
phytosanitary product distribution is uniform and optimum amount.

Moreover, the driving of spraying equipment during work in the field, is a
complex task. The tractor driver must operate the tractor-implement a rate
that meets the requirements of cost, range and volume of spray and also must
maintain an appropriate distance from the tops of the plants which promotes
the quality of the application. Depending on the conditions of the trace, the in-
crease in speed may produce unstable vibrations in the agricultural implement,
trailer sprayer and the spray tower oscillations can damage the quality of the
application.

For a better understanding of the dynamics of movement of the sprayer,
when it is in operation in the field, we can use the mathematical modeling. The
simulation and stability analysis of the model spray-trailer when working on the
field may be of great importance for increasing the accuracy and better control
in plant cultivars. The improvement application procedures can reduce the
amount of fungicide used and hence reduce the production costs, contamination
of agricultural products and the environment.

In [1] a system in a spray tower type was studied. In this work it was
obtained a physical model of spray and also the dynamics of the real system
and mathematical model (Figure 1a) was analyzed. In the physical model
two types of junctions were considered: rigid and flexible, and were analyzed
system responses for different torsional rigidity coefficients. In the mathematical
model of the spray system there is three degrees of freedom and three types
of movements are considered: the lateral, vertical and rotational about a plan,
based on the movements of an inverted pendulum.

By adapting the model from [1], in [2] the author studied the stability of
the nonlinear model of a spray tower type stability criterion by Routh-Hurwitz.
Thus, [2] investigated the behavior of the system through an external harmonic
excitation of the set trailer-sprayer and in analysis developed the torsional stiff-
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ness of the joint and amplitude and frequency of the excitation were varied.

The research shows that the mechanical systems may exhibit chaos due to
the imperfect nature of the assembly (joints) or clearances due to wear, friction,
and fatigue crack propagation. However, in [1], [2] there were no considerations
on the existence of wear on joints whose gaps can produce unwanted vibrations
in the spray system.

The vibrations at the junction point of the trailer-spray tower system can
be modelled by periodic parametric excitations in support. Thus, the system of
nonlinear equations for the problem of trailer sprayer features linear part with
periodic coefficients and the State Transition Matrix (STM) of the system can
be obtained numerically, through the expansion of the Chebyshev polynomials
[5]-[9] and the interactive method of Picard.

In this work, we considered the problem of oscillations, auto-excited due to
the existence of gaps in the agricultural implement, introducing a small vertical
vibration and periodic in sup-port of the inverted pendulum, the model spray
tower type proposed in [1]. Thus, we modeled the spray system with periodic
excitation in support, by Lagrange equation and analyze the local stability of
the system by varying the torsional stiffness and the parameters of the periodic
vertical vibration, amplitude and excitation frequency.

2. Modelling of the Spray Tower

The physical model of the trailer-spray tower system with three degrees of
freedom is shown in Figure 1 and the mathematical model was obtained by the
Lagrange equation.

2.1. Physical Model

Figure 1a represents the physical model of the trailer-spray tower system. The
sprayer tower was modeled by inverted pendulum with a torsion spring, whose
CT and kt represents the damper e torsional stiffness, respectively [1]. The
distance between the center of mass of the trailer mc and the joint point P is
lc. The spray tower is described by a long stem lt with mass mt concentrated at
its end. The angular displacement of the trailer and the spray tower are given
by φc and φt. The tires of the trailer are excited externally by ye1 and ye2.

Furthermore, this paper considers a periodic parametric excitation Asin(ωt)
to represent a vertical periodic vibration at the junction point P , where Ā is the
a amplitude and ω is the vibration frequency. Figure 1b shows the oscillations
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Figure 1: (a) Physical model of the trailer-spray system (modified
of [1]), (b) Joint point vibration.

auto-excited due the existence of gaps in the agricultural implement.

2.2. Equations Spray System

The equations of motion of the system are obtained by the Lagrange equation.
Initially, we obtained the equations of the kinetic and potential energies of the
system:

T = (
mc +mt

2
)(ẋ2c + ẏ2c ) +

mt

2
(l2c φ̇

2
c + l2t φ̇

2
t ) +mtlcltφ̇cφ̇t(cos(φc − φt))

−mlẋclcφ̇ccos(φc)−mlẋcltφ̇tcos(φt)−mtẏclcφ̇csin(φc)

−mtẏcltφ̇tsin(φt) +
Icφ̇2

c + Itφ̇2
t

2
+mtẏcĀωcos(ωt)−

mtlcφ̇csin(φc)Āωcos(ωt)−mtltφ̇tsin(φt)Āωcos(ωt) +
mt

2
(Āω)2cos2(ωt), (1)

V = mcgyc +
kc1 [yc −B1sin(φc)− ye1 ]

2

2
+

kc2 [yc −B2sin(φc)− ye2 ]
2

2

+mtg[yc + lccos(φc) + ltcos(φt) + Āsin(ωt)] +
kc(φc − φt)

2

2
. (2)

Then, using the Lagrangian function (L = TV ), the governing equations of the
motions of the trailer-spray problem can be written by the system of nonlinear
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equations:

(mc +mt)ÿc −mtlcsin(φc)φ̈c −mtltsin(φt)φ̈t−

mtlcdotφ
2
ccos(φc)−mtltφ̇2

t cos(φt)−mtĀω
2sin(ωt) + (kc1 + kc2)yc+

(kc2B2 − kc1B1)sin(φc) + (C1 + C2)ẏc + (C2B2 −B1C1)φ̇ccos(φc)

= kc1ye1 + kc2ye2 + C1 ˙ye1 + C2 ˙ye2 − (mc +mt)g

−mtlcsin(φc)ÿc + (mtl
2
c + Ic)φc +mtlcltcos(φc − φt)φt+

mtlcltφ
2
t sin(φc − φt) +mtlcẋcφcsin(φc) +mtlcĀω

2sin(ωt)sin(φc)−

gmtlcsin(φc)− (kc1B1 − kc2B2)cos(φc)yc+

(kc1B
2
1 + kc2B

2
2)cos(φc)sin(φc)+

(kc1ye1B1 − kc2ye2B2)cos(φc) + ktφc −+ktφt + CT φ̇c − CT φ̇t−

mtlcẍccos(φc)−mtltẋcφ̇tsin(φt) = −(C1B
2
1 +C2B

2
2)φ̇ccos

2(φc)−

(C2B2 − C1B1)ẏccos(φc)− C1B1 ˙ye1cos(φc) + C2B2 ˙ye2cos(φc)

−mtltsin(φt)ÿc + (mtl
2
t + It)φ̈t +mtlcltcos(φc − φt)φ̈c

−mtlcltφ̇2
csin(φc − φt)−mtltẏcφ̇tcos(φt) +mtltĀω

2sin(ωt)sin(φt)−

mtltẋcφ̇tsin(φt) +mtltẏcφ̇tcos(φt)− gmtltsin(φt)− ktφc + ktφt−

CT φ̇c + CT φ̇t −mtltẍccos(φt) +mtltẋcφ̇tsin(φt) = 0. (3)

In state-space form, the system of nonlinear equations of problem-trailer
sprayer features linear part with periodic coefficients:
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where

a43 =F2[mtlcĀω
2sin(ωt) + (kc1B

2
1 + kc2B

2
2) + kt − gmtlc] +mlctkt,

a44 =F2CBT
+mlctCT ,

a45 =mlct[mtlcĀω
2sin(ωt)− gmtlt + kt] + F2kt,

a46 =F2 +mlctCT ,

a63 =mlct(mtlcĀω
2sin(ωt) + (kc1B

2
1 + kc2B

2
1) + kt − gmtlc) + F1kt

a64 =mlctCBT
+ F1CT ,

a65 =F1(mtltĀω
2sin(ωt)− gmtlt + kt) +mlckt,

a66 =[mlct + f1]CT .

For the periodic solutions of the nonlinear dynamical system with periodic
coefficients, such as (4), the Floquet theory provides the theoretical basis for
analysis of the stability of these solutions from the eigenvalues of the Mon-
odromy Matrix or State Transition Matrix (STM) of the linear part of the sys-
tem (4), [3]-[4]. An approximation of the State Transition Matrix (STM) of the
linear part of the system-trailer sprayer (4) was obtained numerically, through
the expansion of Chebyshev polynomials [5]-[9] and interactive method of Pi-
card. The Chebyshev polynomials of the first kind were used, modified with
grade 20 and the number of interactions of Picard was 40. The numerical simu-
lations, that we carried out were implemented in Matlab 6.1 (The Mathworks,
Inc., 2001, USA).

3. Numerical Simulations Results and Dynamics Analysis

For local stability analysis and the bifurcations boundaries of the nonlinear dy-
namics of the sprayer system (4), the states transition matrix in function of
some parameters of the linearization of the system was obtained. Control Pa-
rameters used in the simulations are torsional stiffness (kt) and the parameters
of the vertical periodic vibration, amplitude (A) and excitation frequency ω, at
the junction point P .

For this purpose, the values of the parameter must be found in the Euclidian
space (A,ω, kt) ∈ R3, where the system is critical, ie, the values of the amplitude
(A), of the excitation frequency (ω) and of the torsional stiffness (kt) for which
the Floquet multipliers approaches 1. The other values of the parameters of
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the spray system (4), as in [1]-[2], are:

g = 9.81m/s2; b1 = b2 = 0.85m; lc = 0.2m; ic = 6850kgm2;

lt = 2.4m; it = 6250kgm2; mc = 6500kg; mt = 800kg;

kcl = 465000N/m; c2 = 465000N/m; c1 = 5600s/m; c2 = 5600s/m.

If the Floquet transition matrix (STM), associated with the linear part of
system (4), has a Floquet multiplier equal to 1 and others have magnitudes
less than 1, then the spray system model describes a Flip (period doubling)
bifurcation. If a Floquet multiplier is equal 1, and others have magnitudes
less than 1, then the spray system model describes a Fold (transcritical and
symmetry breaking) bifurcation. Finally, if it exists one complex pair on the
unit circle, and others have magnitudes less than 1, then the spray system
model describes a Hopf bifurcation.

Varying the torsional stiffness 1.000 ≤ kt ≤ 25.000 (N m/rad), the param-
eters of the periodic parametric excitation 0 ≤ A ≤ 1 and 0 < ω ≤ 4π and
considering the parameters values set (5), the Floquet multipliers of the STM,
associated with the system (4), show that the periodic solutions of this system
became nonhyperbolic at a certain localization in the state-control space.

Figure 2 presents the stability diagram obtained in the state-control space
(A,ω, kt) ∈ R3, where it is observed the surface generated by cyclic-fold bifur-
cations of the spray system. Figure 3 shows the orthogonal projections of this
surface in the state-control plane (A × ω). Elapsed time was 520480 seconds
(145h or 6d).

Analyzing qualitatively the surface of the cyclic-fold bifurcations, in Figure
2, we observe that increasing the values of the torsional stiffness parameter, the
periodic solutions of the system (4) become more nonhyperbolic indicating the
existence of the qualitative changes in dynamic of the system.

In fact, the level curves in Figure 3, show that the curves of the cyclic-fold
bifurcations moving from right to left are increasing the stability region of the
solution of the system (4) in the state-control plane (A× ω).

To analyze quantitatively the influence of the torsional stiffness on the dy-
namic of the trailer-spray system and determine accurately the stability regions
on the state-control plane (A× ω), we studied individually, the level curves of
the cyclic-fold bifurcations 3D surface, see Figure 2. The values of the torsional
stiffness analyzed, are: kt = 1.000; 10.000; 19.000 and 19.363 (N m/rad).

First, we considered that torsional stiffness of the spray system model is
kt = 1.000(Nms/rad). In Figure 4, we observe that in the state-control plane
(A× ω), the system is predominantly unstable and the fold bifurcations curve
borders on a small stable re-gion in the upper right of the figure.
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Figure 2: 3D stability diagram of the spray tower system.
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Figure 3: 2D stability diagram of the spray tower system.

In fact, for A = 0.95 and ω = 11, there is a unstable Floquet multiplier µ1 =
1.0217969 (|µ1| > 1) and the other five Floquet multipliers: µ2 = 0.0112673;
µ3,4 = 0.638056±10.095812i and µ5,6 = −0.144267±0.127284i are stable (|µi| <
1). For A = 0.95 and ω = 12 all six Floquet multipliers: µ1 = 0.994417;µ2 =
0.016662;µ3,4 = 0.619721 ± 0.252547i and µ5,6 = −0.212155 ± 0.063986i are
stable.

Increasing the torsional stiffness to kt = 1.000 (Nm s/rad), we obtain a new
stability diagram, Figure 5, where the fold bifurcations curve was displaced to
the left, increasing the stable region.

For A = 0.85 and ω = 8 there is a Floquet multiplier unstable µ1 =
1.004972, and the other five: µ2 = 0.002611; µ3,4 = −0.457778 ± 0.300220i
and µ5,6 = 0.065568 ± 0.067412i are stable. For A = 0.85 and ω = 9, all
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Figure 4: Stability diagram of the spray system for kt = 1.000 (N
m/rad).
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Figure 5: Stability diagram of the spray system for kt = 10.000 (N
m/rad).

six Floquet multipliers are unstable (µ1 = 0.005114;µ2 = 0.985052;µ3,4 =
−0.004470 ± 0.585328i and µ5,6 = 0.015496 ± 0.121811i).

Further increasing the torsional stiffness to kt = 19.000 (Nm/rad), the
stability diagram, Figure 6, presents the fold bifurcations curve is the bound-
ary of the regions of stability and instability. Note that the stability region
of the system, in the control space (A × ω), is increasing. Let A = 0.45
and ω = 4.5 in the instability region of Figure 5. There are two unstable
Floquet multipliers: µ1 = 800.557208 and µ2 = 440.496273, and the others
are stable (µ3 = 0.000647;µ4 = 0.997540 and µ5,6 = −0.009832 ± 0.006096i.
For A = 0.45 and ω = 5.5, in stability region, all Floquet multipliers are
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Figure 6: Stability diagram of the spray system for kt = 19.000 (N
m/rad).
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Figure 7: Stability diagram of the spray system for kt = 19.363 (N
m/rad).

stable (µ1 = −0.520973;µ2 = 0.908853;µ3 = 0.986468;µ4 = 0.000248 and
µ5,6 = −0.006220 ± 0.026495i).

For the value of the torsional stiffness slightly larger, kt = 19.363 (N m/rad),
we observed, in Figure 7, that the fold bifurcation curve became a region of con-
trol parameters (A×ω). After this value, fold bifurcation curves will disappear
and the dynamics of the sprayer system (4) will be independent of the param-
eters (A,ω, kt).
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4. Conclusions

The control parameters of the spray tower system with periodic vibrations at
the junction were studied, and it was observed that its dynamics is unstable
for certain values of torsional stiffness kt and of the parameters of the periodic
parametric excitation A and ω. This was shown in several stability diagrams
in this work. It was observed that the vibrations at the junction point do
not influence the dynamics of the system for values of the torsional stiffness
larger than 20000 Nm/rad. Further studies will be needed to better analyze
the dynamics of this system.
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