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1. Introduction

The cutting angle method for the global minimization of non-negative val-
ued IPH functions over the unit simplex S := {x = (x1, . . . , xn) ∈ R

n
+ :

∑n
i=1 xi = 1} was introduced and studied in [1]. In this paper, we present

an approach for constrained global maximization of extended real valued IPH
functions over SA := {x = (x1, . . . , xn) ∈ R

n
− :

∑n
i=1 aixi = −1} (where A :=

(a1, a2, . . . , an), 0 < ai ≤ 1, i = 1, 2, . . . , n), which is a version of the cutting
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angle method. The cutting angle method for the global maximization such
functions is reduced to the solution of the following auxiliary problem:

max h(x) subject to x ∈ SA, (1.1)

where

h(x) := min
k≤j

( max
i∈I−(yk)

−xi
yki

), x = (x1, · · · , xn) ∈ SA, I−(y
k) = {i : yki < 0},

and

A := (a1, a2, . . . , an), 0 < ai ≤ 1, i = 1, 2, . . . , n.

The approach is based on a convenient description of all local maxima of the
function h, then a global maximizer can be found by sorting out the local
maxima of the function h. By using some transformations of variables, we can
present the maximization of an extended real valued IPH function subject to
the linear constraints as the maximization of a non-positive valued IPH function
over SA.

The structure of the paper is as follows: In Section 2, we provide some
definitions and preliminary results on IPH functions. A representation of non-
positive valued IPH functions on R

n
− by max-type functions is given in Section

3. In Section 4, we present an algorithm for finding constrained global max-
imizers of non-positive valued IPH functions and to prove the convergency of
the algorithm. The description of local maxima of the problem (1.1) is given
in Section 5. We give a new version of the cutting angle method in Section 6.
Finally, the results of numerical experiments are presented in Section 7.

2. Preliminaries and IPH Functions

Consider n-dimensional linear space R
n. We shall use the following notations:

• I := {1, . . . , n}.
• xi is the ith coordinate of a vector x = (x1, · · · , xn) ∈ R

n.
• R

n
− := {x = (x1, · · · , xn) ∈ R

n : xi ≤ 0, ∀ i ∈ I}.
• R

n
−− := {x = (x1, · · · , xn) ∈ R

n : xi < 0, ∀ i ∈ I}.
• R

n
+ := {x = (x1, · · · , xn) ∈ R

n : xi ≥ 0, ∀ i ∈ I}.
• S := {x = (x1, . . . , xn) ∈ R

n
+ :

∑n
i=1 xi = 1}.

• S− := {x ∈ R
n
− :

∑n
i=1 xi = −1}.
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• SA := {x = (x1, . . . , xn) ∈ R
n
− :

∑n
i=1 aixi = −1},

where A := (a1, a2, . . . , an), 0 < ai ≤ 1, ∀ i ∈ I.
• If x, y ∈ R

n, then x ≥ y ⇐⇒ xi ≥ yi for all i ∈ I.
• If x, y ∈ R

n, then x >> y ⇐⇒ xi > yi for all i ∈ I.
• I(x) := {i ∈ I : xi 6= 0} for each x ∈ R

n.

We shall consider the following optimization problem:

max p(x) subject to x ∈ SA, (2.1)

where p is an extended real valued IPH (increasing and positively homogeneous
of degree one) function defined on R

n. Recall (see [7]) that a function p : Rn −→
[−∞,+∞] is called increasing and positively homogeneous of degree one (IPH),
if p is increasing (x ≥ y =⇒ p(x) ≥ p(y)) and p is positively homogeneous of
degree one, that is, p(λx) = λp(x) for all x ∈ R

n and all λ > 0. In this paper,
we shall consider the extended real-valued IPH functions p defined on R

n such
that 0 ∈ domp := {x ∈ R

n : −∞ < p(x) < +∞}.

Proposition 2.1. Let p : Rn −→ [−∞,+∞] be an IPH function. Then

(1) p(0) = 0.
(2) p(x) ≥ 0 for all x ≥ 0, and p(x) ≤ 0 for all x ≤ 0.

Proof. The assertions (1) and (2) follow from the definition of an IPH func-
tion.

The preceding proposition shows that the problem of the global maximiza-
tion of an extended real valued IPH function over SA can be reduced to the
global maximization of a non-positive valued IPH function over SA. Therefore,
in order to solve the problem (2.1), it suffices to restrict our attention to the
non-positive valued IPH functions p : Rn

− −→ [−∞, 0].

In the following, we give a definition of supergradient for a function f (see
[7]).

Definition 2.1. Let X be a non-empty set and H := {h : X −→ (−∞, 0] :
h is a function} be a set of finite valued functions defined on X. A function
h ∈ H is called an H-supergradient of a function f : X −→ [−∞, 0] at a
point x0 ∈ X, if f(x) − f(x0) ≤ h(x) − h(x0) for all x ∈ X. The set of all H-
supergradients of a function f at a point x0 ∈ X is called theH-superdifferential
of f at the point x0 ∈ X, and is denoted by ∂+Hf(x0).
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Let f be a real valued function defined on a subset X ⊆ R
n, x ∈ X and let

u ∈ R
n be such that x + αu ∈ X for all fairly small α > 0. We say that the

function f is directional differentiable at the point x in the direction u, if the
limit

lim
α−→0+

1

α
[f(x+ αu)− f(x)]

exists. In this case, the directional derivative of the function f at x in the
direction u is denoted by f ′(x, u), and we have

f ′(x, u) = lim
α−→0+

1

α
[f(x+ αu)− f(x)].

3. Representation of Non-Positive Valued IPH Functions on R
n
− by

Max-Type Functions

The theory of non-positive valued IPH functions defined on R
n
− differs from the

one of non-negative valued IPH functions defined on R
n
+ (see [1]) from some

ways. In this section, we give some characterizations of these functions.
We introduce the coupling function v : Rn × R

n −→ [−∞, 0] defined by

v(x, y) := inf{λ ≤ 0 : λy ≤ −x}, (3.1)

(with the convention inf ∅ = 0).
The characterizations and properties of the coupling function v have been

investigated in [3].
Each vector x ∈ R

n generates the following sets of indices:

I+(x) := {i ∈ I : xi > 0}, I0(x) := {i ∈ I : xi = 0}, I−(x) := {i ∈ I : xi < 0}.

Fix y ∈ R
n. Let us define the function vy by vy(x) := v(x, y) for all x ∈ R

n. In
view of (3.1), we obtain

vy(x) =

{

max
i∈I−(y)

−xi

yi
, x ∈ Vy

0, x /∈ Vy,
(3.2)

where

Vy := {x ∈ R
n : ∀ i ∈ I−(y) ∪ I0(y), xi ≤ 0,

and max
i∈I−(y)

−xi
yi

≤ min
i∈I+(y)

−xi
yi

}. (3.3)
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(Note that we use the convention max ∅ = −∞.) It is easy to check that the
set Vy (y ∈ R

n) is a closed, convex and downward cone. Moreover, the function
vy : Rn −→ [−∞, 0] is an IPH function.

Lemma 3.1. Let y ∈ R
n
−\{0}. Then, Vy = R

n
− and the restriction function

vy : Rn
− −→ [−∞, 0] is a continuous, convex and finite valued IPH function.

Proof. Fix y ∈ R
n
− \ {0}. Clearly I+(y) = ∅, and I−(y) ∪ I0(y) = I. Thus,

we get Vy = R
n
−, and vy(x) = max

i∈I−(y)

−xi

yi
for all x ∈ R

n
−. Note that I−(y) 6= ∅,

and so, vy is a finite valued function. Also, it is easy to see that the function
vy : Rn

− −→ [−∞, 0] is an IPH and continuous function. For the proof of the
convexity of vy, consider x, x

′ ∈ R
n
−. It is clear that x+ x′ ∈ R

n
−, and we have

−xi
yi

≤ max
i∈I−(y)

−xi
yi

= vy(x), ∀ i ∈ I−(y),

and

−x′i
yi

≤ max
i∈I−(y)

−x′i
yi

= vy(x
′), ∀ i ∈ I−(y).

Hence,

vy(x+ x′) = max
i∈I−(y)

−(xi + x′i)

yi
≤ vy(x) + vy(x

′).

This, together with the positively homogenity of vy implies that the function
vy is convex.

Theorem 3.1. A function p : Rn
− −→ [−∞, 0] is IPH if and only if

p(x) ≤ −vy(x)p(y), ∀ x, y ∈ R
n
−. (3.4)

Theorem 3.2. (1) A function p : Rn
− −→ [−∞, 0] is IPH if and only if

p(x) = inf{vy(x) : p(y) ≤ −1}.

(2) Let x0 ∈ R
n
− be a vector such that −∞ < p(x0) < 0, and y := x0

−p(x0)
. Then,

0 ≥ vy(x) ≥ p(x) for all x ∈ R
n
−, and vy(x

0) = p(x0).

Corollary 3.1. Every IPH function p : Rn
− −→ [−∞, 0] is upper semi-

continuous.
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Proof. It is an immediate consequence of Lemma 3.1 and Theorem 3.2(1).

Remark 3.1. Assume that H := {vy : y ∈ R
n
− \ {0}}, and p : Rn

− −→
(−∞, 0] is an IPH function. Consider the point x0 ∈ domp such that −∞ <

p(x0) < 0, and let y := x0

−p(x0)
. Then, by Theorem 3.2(2), we have vy ∈ ∂+Hp(x

0).

In the sequel, we will use the vector eAm := (0, · · · , 0, −1
am
, 0, · · · , 0) ∈ R

n
−,

where A := (a1, a2, . . . , an), 0 < am ≤ 1 for each m ∈ I. Note that eAm ∈ SA for
all m ∈ I.

Clearly, I−(e
A
m) = {m}, and for the vector y := eAm

−p(eAm)
we have vy(x) =

−1
am
xmp(e

A
m) for each x = (x1, · · · , xn) ∈ R

n
−.

4. Algorithm

We now present an algorithm for the search for a global maximizer of a finite
valued IPH function p over SA. Recall that a finite valued IPH function p
defined on R

n
− is non-positive valued, because p(x) ≤ p(0) = 0 for all x ∈ R

n
−.

We assume that p(x) < 0 for all x ∈ SA. It follows from the non-positivity of p
that I−(y) = I−(x) for all x ∈ SA, and y = x

−p(x) .

Algorithm 1

Step 0: (initialization)
a) Take points xm := eAm for m = 1, · · · , n, and construct the basis vectors
ym := xm

−p(xm) (m = 1, · · · , n).
b) Define the function hn(x) := min

j≤n
vyj (x) = min

j≤n

−1
aj
xjp(e

A
j ), x = (x1, · · · , xn) ∈

SA.
c) Set k := n.
Step 1: Find x∗ := arg[max

x∈SA

hk(x)].

Step 2: Set k := k + 1, and xk := x∗.
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Step 3: Compute yk := xk

−p(xk)
. Define the function

hk(x) := min
j≤k

vyj (x)

= min(hk−1(x), max
i∈I−(yk)

−xi
yki

)

= min
j≤k

max
i∈I−(yj)

−xi
yji

, x = (x1, · · · , xn) ∈ SA.

Go to Step 1.

The Algorithm 1 can be considered as a version of the cutting angle method
(see [7]). Let

λk = max
x∈SA

hk(x). (4.1)

It follows from Theorem 3.2(2) that

vyj (x) ≥ p(x) ∀ x ∈ SA, j = 1, · · · , k. (4.2)

Hence

hk(x) ≥ p(x) ∀ x ∈ SA, (4.3)

and

λk = max
x∈SA

hk(x) ≥ max
x∈SA

p(x). (4.4)

Thus, λk is a upper estimate of the global maximum p∗ = max
x∈SA

p(x).

Proposition 4.1. Let k ≥ n+ 1. Then yii ≤ yki for all i ∈ I.

Proof. In view of (4.3) and the definition of hk the result follows.

It is worth noting (by Theorem 5.1, below) that the vectors yk and xk

belong to R
n
−−.

Proposition 4.2. Let k ≥ n + 1. If yii ≥ yki for some i ∈ I, where

yi =
eAi

−p(eAi )
(i = 1, · · · n) and yk = xk

−p(xk)
, then xk is a global maximizer of the

function p over SA.

Proof. It is obvious.
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Remark 4.1. Let k ≥ n+ 1. If there exists i ∈ I such that yii = yki , then
xk is a global maximizer of the function p over SA.

Proposition 4.3. Let k ≥ n + 1. If there exists n + 1 ≤ j < k + 1 such
that yk+1 ≤ yj, then xk+1 is a global maximizer of the function p over SA.

Proof. This is an immediate consequence of (4.4).

We will now show that the sequence {xk}k≥1 generated by Algorithm 1

converges to a global maximizer of IPH function p over SA. The proof of
the convergency of this algorithm differs from the one of given in [1] for non-
negative valued IPH functions on R

n
+. In order to prove the convergency of this

algorithm, we first state and prove some results.

Proposition 4.4. Let X and H be as in Definition 2.1. Assume that
h ∈ H is an H-supergradient of a function f : X −→ [−∞, 0] at a point
x0 ∈ X. If h has a global maximum at the point x0 ∈ X, then the function f
has a global maximum at the point x0 ∈ X.

Proof. It is obvious.

Proposition 4.5. Let X and H be as in Definition 2.1. Assume that
A ⊆ X and for each a ∈ A, ha is an H-supergradient of the function f : X −→
[−∞, 0] at the point a ∈ A such that ha(a) = f(a). Then the function ψA is an
H-supergradient of the function f on the set A, that is,

ψA(x)− ψA(a) ≥ f(x)− f(a), ∀ x ∈ X, ∀ a ∈ A,

where ψA(x) := inf
a∈A

ha(x) for all x ∈ X.

Proof. We have ha(x) − ha(a) ≥ f(x) − f(a) for all x ∈ X and all a ∈ A.
Since ha(a) = f(a), we get ha(x) ≥ f(x) for all x ∈ X and all a ∈ A. Then,
ψA(x) = inf

a∈A
ha(x) ≥ f(x) for all x ∈ X. Let a0 ∈ A be arbitrary. We have

f(a0) ≤ ψA(a0) = inf
a∈A

ha(a0) ≤ ha0(a0) = f(a0).

Therefore, since a0 ∈ A was arbitrary, we deduce that f(a) = ψA(a) for all
a ∈ A. Hence, ψA(x)− ψA(a) ≥ f(x)− f(a) for all x ∈ A and all a ∈ X, which
completes the proof.
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In the following, we assume that X is a metric space and

H := {h : X −→ (−∞, 0] : h is a function} (4.5)

is a set of finite valued functions defined on X.

Proposition 4.6. Let X and H be as in (4.5). Let A ⊆ X and f : X −→
[−∞, 0] be an upper semi-continuous function. Assume that h ∈ H is a lower
semi-continuous function such that h is an H-supergradient of the function f
on the set A. Then h is an H-supergradient of the function f on the closure of
the set A.

Proof. Let â ∈ Ā and ε > 0 be arbitrary. Since the functions f and h are
upper semi-continuous and lower semi-continuous, respectively, it follows that
there exists a neighborhood V of â such that

f(x) ≤ f(â) + ε, ∀ x ∈ V, (4.6)

and

h(â) ≤ h(x) + ε, ∀ x ∈ V. (4.7)

Let a0 ∈ A ∩ V (such a0 exists, because â belongs to Ā). Since h is an H-
supergradient of the function f on the set A, we have

h(x)− h(a0) ≥ f(x)− f(a0), ∀ x ∈ X.

This, together with (4.6) and (4.7) implies that

h(x)− h(â) ≥ h(x) − h(a0) + h(a0)− h(â)

≥ h(x) − h(a0)− ε

≥ f(x)− f(a0)− ε

≥ f(x)− f(â)− 2ε, ∀ x ∈ X.

Hence, since â ∈ Ā and ε > 0 were arbitrary, we deduce that h is an H-
supergradient of the function f on the set Ā.

The following two propositions have been proved in [5] and [4], respectively.

Proposition 4.7. ([5], Theorem 10.6). Let {fi : Rn
− −→ R : i ∈ I} be a

point-wise bounded collection of real valued convex functions defined on R
n
−. Let

D be any compact subset of Rn
−. Then the collection {fi}i∈I is equicontinuous

and uniformly bounded on D.
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Proposition 4.8. ([4], Proposition 9.1.4). Let X be a metric space and
let {fi : X −→ R : i ∈ I} be a family of real valued equicontinuous functions
defined on X. Let A be a family of subsets of the index set I. Then the family
{ψA}A∈A is equicontinuous, where ψA(x) := inf

t∈A
ft(x) for all x ∈ X and all

A ∈ A.

Remark 4.2. Note that by Lemma 3.1 and Theorem 3.2 we have the
sequence {vyi}i≥1 in Algorithm 1 is a point-wise bounded sequence of real
valued convex functions defined on R

n
−. Hence, by Proposition 4.7 we conclude

that the sequence {vyi}i≥1 is equicontinuous and uniformly bounded on SA.

Theorem 4.1. Let X be a metric space and {hn}n≥1 be a sequence
of real valued equicontinuous functions defined on the compact set D ⊂ X.
Let ψ(x) := inf{h1(x), h2(x), · · · } and ψk(x) := min{h1(x), h2(x), · · · , hk(x)}
(x ∈ D, k ∈ N). Assume that xk is a maximizer of the function ψk on D
(k = 1, 2, · · · ). If the sequence {xk}k≥1 has a limit point x∗ ∈ D, then x∗ is a
maximizer of the function ψ(x) = inf

k≥1
ψk(x) (x ∈ D).

Proof. Since xk is a maximizer of the function ψk (k = 1, 2, · · · ), we conclude
from the definition of ψk that

ψk(xk) ≥ ψk(xk+1) ≥ ψk+1(xk+1), ∀ k ∈ N.

Thus the sequence {ψk(xk)}k≥1 is decreasing. Also, observe that for every
x ∈ D and every k ∈ N, we have

ψk(xk) ≥ ψk(x) ≥ ψ(x).

Then the decreasing sequence {ψk(xk)}k≥1 is bounded from below, and so it is
convergent. Moreover,

lim
k−→+∞

ψk(xk) ≥ sup
x∈D

ψ(x) ≥ ψ(x∗). (4.8)

We will now show that ψ(x∗) = lim
k−→+∞

ψk(xk). Let ε > 0 be given. In view of

Proposition 4.8 and the equicontinuity of the sequence {hn}n≥1 on D, we get
the sequence {ψk}k≥1 is equicontinuous. Then there exists δ > 0 such that

∀ x, y ∈ D with d(x, y) < δ =⇒ |ψk(x)− ψk(y)| <
ε

2
, ∀ k ≥ 1. (4.9)
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Since x∗ is a limit point of the sequence {xk}k≥1, then there exists a subsequence
{xkn}n≥1 of {xk}k≥1 such that xkn −→ x∗. Thus, by (4.9) we have

|ψkn(xkn)− ψkn(x
∗)| < ε

2
for sufficiently large kn. (4.10)

On the other hand, since by the definition of ψ and ψk we have ψkn(x
∗) −→

ψ(x∗), it follows that

|ψkn(x
∗)− ψ(x∗)| < ε

2
for sufficiently large kn. (4.11)

Now, in view of (4.10) and (4.11), we get ψkn(xkn) −→ ψ(x∗). Since

{ψkn(xkn)}n≥1

is a subsequence of the convergent sequence {ψk(xk)}, we conclude that

ψk(xk) −→ ψ(x∗).

Finally, it follows from (4.8) that ψ(x∗) = max
x∈D

ψ(x).

Now, in the following we prove the convergency of Algorithm 1.

The proof of the convergency of Algorithm 1: By Lemma 3.1, we have
each function vyi (i = 1, 2, · · · ) is continuous, convex, IPH and finite valued.
In view of Remark 4.2 we observe that the sequence {vyi}i≥1 is equicontinuous
and uniformly bounded on SA, and so the sequence {hk}k≥1 in Algorithm 1 is
uniformly bounded on SA.Moreover, we conclude from Proposition 4.8 that the
sequence {hk}k≥1 is equicontinuous. Thus, by [[6], Theorem 25.7] there exists
a subsequence of {hk}k≥1, which is uniformly convergent on SA. Say, converges
to the function h on SA. Then the function h is continuous on SA. On the
other hand, we have vyi ∈ ∂+Hp(x

i) and vyi(x
i) = p(xi) for all i ≥ 1, where

H := {h, hk, vyi : i, k ∈ N} and by the definition of the function hk, it is easy
to see hk ∈ ∂+Hp(x

k) and hk(x
k) = p(xk) for all k ≥ 1. Then, by Proposition

4.5 we deduce that h ∈ ∂+Hp on the set B := {xi : i ∈ N}. Since h is continuous
on SA and the function p is upper semi-continuous on SA, we conclude from
Proposition 4.6 that h ∈ ∂+Hp on the closure B̄ of B. Hence, h ∈ ∂+Hp(x

∗), where
x∗ ∈ SA is a limit point of the sequence {xi}i≥1 (note that SA is a compact
set, and so the sequence {xi}i≥1 has always a limit point x∗ ∈ SA). Because of
h(x) = inf

k≥1
hk(x) for all x ∈ SA and xk is a maximizer of the function hk on SA,

in view of Theorem 4.1 we have h(x∗) = max
x∈SA

h(x). Therefore, by Proposition

4.4 we get p(x∗) = max
x∈SA

p(x). This completes the proof.
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5. Auxiliary Problem

Step 1 of Algorithm 1 (that is, finding the global maximum of the function hk
on the set SA) is the most difficult part of Algorithm 1. This problem can be
represented in the following form:

max hk(x) subject to x ∈ SA, (5.1)

where

hk(x) := min
j≤k

( max
i∈I−(yj)

−xi
yji

), k ≥ n; x = (x1, · · · , xn) ∈ SA, (5.2)

yj := xj

−p(xj)
(j = 1, · · · , k), and xj := eAj for j = 1, · · · , n.

Theorem 5.1. Let k > n, yj :=
eAj

−p(eAj )
(j = 1, · · · , n), and yj << 0 for

all j = n + 1, · · · , k. Then each local maximizer of the function hk, defined by
(5.2) over SA, is a strictly negative vector.

Proof. It is sufficient to show that for each non-strictly negative vector
x ∈ SA, and for each ε > 0 there exist x′ ∈ SA such that x′ << 0, ||x′ − x|| < ε
and hk(x

′) > hk(x). For this end, let x = (x1, · · · , xn) ∈ SA be an arbitrary
non-strictly negative vector and ε > 0 be given. Then, I0(x) is non-empty,
where I0(x) = I \ I−(x) = {i ∈ I : xi = 0}. Let us calculate the function vyj
which defined by (3.2) at the point x. We have

vyj (x) =
−1

aj
xjp(e

A
j ), j = 1, · · · , n, (5.3)

where A = (a1, a2, . . . , an), 0 < aj ≤ 1, j ∈ I, and, in particular, we get

vyj (x) = 0 for each j ∈ I0(x) (j = 1, · · · , n). (5.4)

We also have

vyj (x) = max
i∈I

−xi
yji

= 0, j = n+ 1, · · · , k. (5.5)

Therefore, it follows from (5.3), (5.4) and (5.5) that vyj (x) < 0 if and only if
j ≤ n and j /∈ I0(x), that is, j ∈ I−(x). Hence,

hk(x) = min
j≤k

vyj (x) = min
j∈I−(x)

vyj (x) = min
j∈I−(x)

−1

aj
xjp(e

A
j ). (5.6)
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Let m = |I0(x)|. Thus, m < n. Choose ε′ > 0 such that 0 < 1
ai
ε′ < ε, xi+

1
ai
ε′ <

0 for all i ∈ I−(x), and
n−m
m ε′ < ε, where A = (a1, a2, . . . , an), 0 < ai ≤ 1, ∀ i ∈

I.
Now, define the point x(ε′) by

x(ε′)i :=







xi +
1
ai
ε′, i /∈ I0(x),

n−m
m (− 1

ai
ε′), i ∈ I0(x).

Then it is clear that x(ε′) << 0. Since x ∈ SA, one has

n
∑

i=1

aix(ǫ
′)i

=
∑

i/∈I0(x)

ai(xi +
1

ai
ǫ′) +

∑

i∈I0(x)

ai(
n −m

m
(− 1

ai
ǫ′))

=
∑

i/∈I0(x)

aixi + (n−m)ǫ′ − (n−m)ǫ′

=
∑

i/∈I0(x)

aixi

=
∑

i/∈I0(x)

aixi +
∑

i∈I0(x)

aixi

=

n
∑

i=1

aixi = −1.

Hence, x(ε′) ∈ SA. Also, we have

||x− x(ε′)|| = max
1≤i≤n

|xi − x(ε′)i| = max{ 1

ai
ε′,

n−m

m

1

ai
ε′} < ε.

Now, we calculate hk(x(ε
′)) = min

j≤k
vyj (x(ε

′)). For j ≥ n + 1 and sufficiently

small ε′, we have

vyj (x(ε
′)) = max

i∈I

−x(ε′)i
yji

=
n−m

m
ε′ max

i∈I0(x)

1

ai

1

yji
. (5.7)

Also, for j ∈ I0(x), we deduce that

vyj (x(ε
′)) = − 1

aj
x(ε′)j p(e

A
j ) =

1

aj2
n−m

m
ε′p(eAj ). (5.8)
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Finally, for j ∈ I−(x), we get

vyj (x(ε
′)) = − 1

aj
(xj +

1

aj
ε′)p(eAj ). (5.9)

Therefore, for sufficiently small ε′ > 0, it follows from (5.7), (5.8) and (5.9) that

hk(x(ε
′)) = min

j≤k
vyj (x(ε

′)) = min
j∈I−(x)

vyj (x(ε
′))

= min
j∈I−(x)

[− 1

aj
(xj +

1

aj
ε′)p(eAj )]. (5.10)

Consequently, in view of (5.6) and (5.10) we conclude that hk(x(ε
′)) > hk(x),

which completes the proof.

Corollary 5.1. Let {xk}k≥1 be a sequence generated by Algorithm 1.
Then, xk << 0 for all k > n, and hence yk << 0 for all k > n.

Proof. By induction on k, the result follows from Theorem 5.1.

It is well-known that the functions vyk and h (we omit the index k for the
sake of simplicity) are directionally differentiable. In order to show it, we can
use the well-known results related to the directional derivative of the functions:

f(x) := max
j∈J

gj(x), and g(x) := min
j∈J

gj(x), x ∈ R
n,

where J is a finite set (see, for example, [2], Corollary 3.2). Now, let

R(x) := {k : vyk(x) = h(x)}, and Qk(x) := {i ∈ I−(y
k) : vyk(x) =

−xi
yki

}.

We need to introduce some well-known definitions about point-to-set mappings.
Consider a point-to-set mapping f defined on R

n
− which associates a subset of

N to each point of Rn
−. The mapping f is closed at a point x, if the relations

xk −→ x, yk −→ y and yk ∈ f(xk) (k = 1, 2, · · · )
imply y ∈ f(x). If f is closed at each point x ∈ R

n
−, then we say that f is closed

on R
n
−.

Lemma 5.1. The point-to-set mappings Qk : Rn
− −→ 2I and R : Rn

− −→
2N defined by

Qk(x) := {i ∈ I−(y
k) : vyk(x) =

−xi
yki

} and R(x) := {k ∈ N : vyk(x) = h(x)}

are closed mappings.
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Proof. It is obvious.

In the following proposition, we consider the vectors u ∈ R
n such that there

exists δ > 0 with x+ δu ∈ R
n
−.

Proposition 5.1. Consider the functions vyk and h defined by (3.2) and
(5.2), respectively. Then, for each x ∈ R

n
−, one has

v′yk(x, u) = max
i∈Qk(x)

−ui
yki

,

and

h′(x, u) = min
k∈R(x)

v′yk(x, u) = min
k∈R(x)

max
i∈Qk(x)

−ui
yki

.

Proof. See [2].

In the sequel, we consider the relative interior riSA of SA, which is given
as follows:

riSA = {x ∈ SA : xi < 0 for all i ∈ I}.
Now, let x ∈ SA. The cone

K(x, SA) := {u ∈ R
n : ∃ α0 > 0 such that x+ αu ∈ SA, ∀ α ∈ (0, α0)}

is called the tangent cone at the point x with respect to SA.
The following necessary condition for a local maximum is well-known (see,

for example, [2]), and therefore we omit its proof.

Proposition 5.2. Let x ∈ SA be a local maximizer of the function h over
SA. Then, h

′(x, u) ≤ 0 for all u ∈ K(x, SA).

Proposition 5.3. Let x ∈ riSA. Then

K(x, SA) = {u ∈ R
n :

∑

i∈I

aiui = 0},

where A = (a1, a2, . . . , an), 0 < ai ≤ 1, ∀ i ∈ I.

Proof. It is an immediate consequence of the definition of the tangent cone.

Applying Proposition 5.1, Proposition 5.2 and Proposition 5.3, we can ob-
tain the following result:
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Theorem 5.2. Let x << 0 be a local maximizer of the function hk over
the set riSA such that hk(x) < 0. Then there exists a subset {yj1 , · · · , yjn} of
the set {y1, · · · , yk} such that:

(1) x = (yj11 , · · · , y
jn
n )dA, where

dA := −hk(x) =
−1

∑

i∈I
aiy

ji
i

, and A = (a1, a2, . . . , an),

0 < ai ≤ 1, ∀ i ∈ I.

(2) max
j≤k

min
i∈I−(yj)

y
ji
i

yji
= 1.

(3) If jm ≤ n (m ∈ I), then jm = m, and if jm ≥ n+1, then yjii < yjmi , ∀ i ∈
I, i 6= m.

Remark 5.1. Consider the set of k vectors Λk = {y1, ..., yk} generated
by Algorithm 1. Every local maximizer x of hk in riSA corresponds to a com-
bination of n vectors L = {yj1 , ..., yjn} which satisfy the following conditions:

(I) For all i, r ∈ I, i 6= r, we have yjii < yjri .

(II) For each yr ∈ Λk \ L, there exists i ∈ I such that yjii ≥ yri .

To illustrate the above conditions, visualize L as an n × n matrix, whose
rows are yj1 , yj2 , ..., yjn :











y
j1
1

y
j1
2

. . y
j1
n

y
j2
1

y
j2
2

. . y
j2
n

. . .

yjn
1

yjn
2

. . yjnn











.

Condition (I) implies that the diagonal of L is dominated by their columns,
and condition (II) implies that the diagonal of L is not dominated by any
other vector yr, not already in L (diag(L) is dominated by yr, means that
diag(L) < yr).

The location of the local maximum xmax and its value d(L) = hk(xmax) can
be found from the diagonal of L:

xmax = − diag(L)

trace(L)
,
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and

d(L) = hk(xmax) =
1

trace(L)
.

Recall that the function hk is continuous on the compact set SA. In order
to find the global maximum of the function hk at Step 1 of Algorithm 1, we
need to examine all its local maxima, and hence all combinations of L of the n
vectors which satisfy the conditions (I) and (II). In view of

hk(x) = min(hk−1(x), vyk(x)),

if we have already computed all combinations of n vectors out of k − 1 vectors
satisfying the conditions (I) and (II) (i.e. all candidates for local maxima of the
auxiliary function hk−1(x)), at the previous iteration, we only need to compute
those combinations that have been added by aggregation of the last vector yk,
that is, those combinations of L that include vector yk. Suppose we already
know the set V k−1 of combinations of k− 1 vectors satisfying (I) and (II). We
need to update V k−1 to V k (i.e. all possible combinations of n vectors out of k
vectors satisfying (I) and (II)). At this stage, two events can take place:

(a) Some of elements of V k−1 may be deleted because they fail test (II) (with
yk playing the role of yr).

(b) New combinations containing yk may be added to V k. By [8], Theorem
2, these new combinations containing yk can be obtained from those that just
have been deleted from V k−1 because they fail test (II), and the way to do it is
to repeat replace each other vector in these deleted combinations with yk and
check condition (I). If it passed, add the new combination to V k, and otherwise
discard it.

Algorithm 2

(Update of the set V k−1 to V k)
Input: the set V k−1; the new vector yk.
Output: the set V k.
Step 1: Set V k = ∅.
Step 2: Test all elements L of V k−1 against condition (II), with yr = yk. Put
those L that fail the test into Temp and those that pass into V k.
Step 3: For every L in Temp, form n copies of it, and replace row i in the ith
copy with yk. Test condition (I). If test passed, add this modified copy to V k,
otherwise discard it.
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Step 4: Calculate d(L) = 1
trace(L) for all elements L of V k and sort V k with

respect to d(L) in ascending order and choose the largest d := d(L).

The cutting angle method frequently calls Algorithm 2 to solve the problem
(5.2), it sorts the set V k for the highest local maximum of hk(x), evaluate p at
this point and adds the newly formed vector to the set Λk.

6. A New Version of the Cutting Angle Method

The results of Sections 4 and 5 allow us to give a new version of the cutting
angle method for maximization non-positive valued IPH functions over SA.

Algorithm 3

Step 0:

(a) Evaluate the objective function p(x) in the vertices of SA and form the
matrix Lroot = {y1, ..., yn}.
(b) Calculate dA = −(

∑

i∈I
aiy

i
i)
−1, where A = (a1, a2, . . . , an), 0 < ai ≤ 1, i ∈ I.

(c) Set k = n, Λk = {y1, ..., yn} and V k = {Lroot}.
Step 1:

(a) Select L = Head(V k) with the biggest dA (the global maximum of hk(x)
exception case k = n).

(b) Form x∗ = − diag(L)
trace(L) , and evaluate pbest = p(x∗).

Step 2: Set k = k + 1, form

yk = (
x∗

1

−p(x∗) ,
x∗

2

−p(x∗) , · · · ,
x∗

n

−p(x∗)), and

set Λk = Λk−1 ∪ {yk}.
Test if yki = yii for some i ∈ I, then
print f(x∗ is a global maximizer of p) and stop,
else, call Algorithm 2 (V k−1, yk, V k).
Step 3: (Stopping Criterion)
If k < kmax and d− pbest > ε, go to Step 1.

7. Numerical Experiments

The applicability of our approach was checked by solving a number of test
problems with IPH objective functions. In some cases, we can add −1 =

∑

i∈I
aixi

to the objective function to hold the condition p(x) < 0 for all x ∈ SA. The
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results of numerical examples with estimates of the precision ε = 0.01 are
presented. To describe the results we use the following notations:

• f = f(x) is the objective function;
• k is the number of iterations;
• n is the number of variables.

To carry out numerical experiments, we use the following problems:

Problem 7.1.

f = f(x1, x2) = min(x1 + 2x2, 2x1 + x2), (x1, x2) ∈ R
2.

Problem 7.2.

f = f(x1, x2, x3) = 3
√
x1x2x3 +min(x1 + 2x3, 2x1 + x2), (x1, x2, x3) ∈ R

3.

Problem 7.3.

f = max{cixi : i = 1, 2, · · · , n}+min{bjxj : j = 1, 2, · · · , n},

where ci = 2 + 0.5i (i = 1, 2, · · · , n), bj = (j + 2)(n − j + 2) (j = 1, 2, · · · , n)
and xi ∈ R (i = 1, ..., n).

Comments. Note that the objective functions of three problems are real
valued IPH functions. The version of the cutting angle method described in
Algorithm 3 was applied for finding the global maximum of these functions
over SA. The execution time of Algorithm 3 for Problem 7.1 and Problem
7.3 was less than 2 seconds. First, note that the optimal solution of Problem
7.1 is the point (−1/2,−1/2) over S−, which is obtained during 3 iterations
within a precision ε = 0.01. The optimal solution of Problem 7.2 is the point
(0, −2/3, −1/3) over S−. The best found solution of Problem 7.2 over S− is

x1 = −0.0000, x2 = −0.6667, x3 = −0.3333.

The optimal solution of Problem 7.1 over SA is the point (-0.5 , -0.5) for
the coefficient matrix A := (1, 1), which is obtained during 3 iterations within
a precision ǫ = 0.01 that is equal to optimal solution for this problem over S−.

Now, we show that when the coefficient matrix A := (a1, a2), 0 < ai ≤
1 (i = 1, 2) approaches to the coefficient matrix A0 = (1, 1), the global maxi-
mum of the Problem 7.1 over SA approaches to global maximum of this problem
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over S− when we choose k = 4 and ǫ = 0.01. The optimal solutions of this prob-
lem over SA are listed in the following table.

A = (a1, a2) p(x∗) x∗

————————————————————————-
(0.3, 0.7) − 2.9630 (−0.7407,−1.1111)
(0.4, 0.8) − 2.5000 (−0.6250,−0.9375)
(0.5, 0.8) − 2.3077 (−0.7692,−0.7692)
(0.6, 0.9) − 2.0000 (−0.6667,−0.6667)
(0.8, 0.8) − 1.8750 (−0.6250,−0.6250)
(0.8, 0.9) − 1.7674 (−0.5882,−0/5882)
(0.8, 1.0) − 1.6667 (−0.5556,−0.5556)
(0.9, 1.0) − 1.5789 (−0.5263,−0.5263)
(1.0, 1.0) − 1.5000 (−0.5000,−0.5000)
————————— ( Table 7.1.1 ) ————————-

For Problem 7.2 we choose k = 49 and ǫ = 0.01, we conclude that for A0 :=
(1, 1, 1) one has p(x∗) = −7.7043 and x∗ = (−0.0002,−0.6665,−0.3330) over
S−. The optimal solutions of this problem over SA are listed in the following
table.

A = (a1, a2, a3) p(x∗) x∗

—————————————————————————————-
(0.3, 0.5, 0.8) − 1.2430 (−0.0004,−1.1763,−0.5882)
(0.4, 0.5.0.8) − 1.1739 (−0.0004,−1.1109,−0.5555)
(0.5, 0.6, 0.8) − 1.0565 (−0.0004. − 0.9999,−0.4999)
(0.7, 0.7, 0.9) − 0.9187 (−0.0003,−0.8694,−0.4347)
(0.9, 0.8, 0.9) − 0.8452 (−0.0003,−0.7998,−0.3999)
(0.9, 0.9, 1.0) − 0.7546 (−0.0003, ,−0.7141 − 0.3570)
(0.9, 1.0, 1.0) − 0.7043 (−0.0002,−0.6665,−0.3333)
(1.0, 1.0, 1.0) − 0.7043 (−0.0002,−0.6665,−0.3333)
—————————- (Table 7.2.1) ——————————————-

For Problem 7.3, consider two cases.

Case 1 : For n = 2, k = 10, ǫ = 0.01 and A0 = (1, 1), the optimal
solution of this problem over the unit simplex S− is p(x∗) = −5.1341 and
x∗ = (−0.3595,−0.6404). The optimal solutions of this problem over SA are
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listed in the following table.

A = (a1, a2) p(x∗) x∗

——————————————————————–
(0.3, 0.7) − 9.6115 (−0.5342,−1.1996)
(0.5, 0.7) − 8.3441 (−0.5415,−1.0418)
(0.7, 0.8) − 6.7794 (−0.4617,−0.8460)
(0.8, 0.9) − 5.9888 (−0.4092,−0.7474)
(0.9, 1.0) − 5.3630 (−0.3740,−0.6693)
(1.0, 1.0) − 5.1341 (−0.3595,−0.6405)
———————– ( Table 7.3.1 ) ————————

Case 2 : For n = 3, k = 4, ǫ = 0.01 and A0 = (1, 1, 1), the optimal
solution of this problem over the unit simplex S− is p(x∗) = −4.5313 and
x∗ = (−0.3125,−0.3125,−0.3125). The optimal solutions of this problem over
SA are listed in the following table.

A = (a1, a2, a3) p(x∗) x∗

————————————————————————————–
(0.2, 0.6, 0.8) − 8.2386 (−0.5682,−0.5682,−0.6818)
(0.7, 0.8, 0.9) − 6.7300 (−0.4630,−0.4630,−0.5556)
(0.7, 0.8, 0.9) − 5.6202 (−0.3876,−0.3876,−0.4651)
(0.7, 0.8, 1.0) − 5.3704 (−0.3330,−0.3333,−0.4444)
(0.8, 1.0, 1.0) − 4.8333 (−0.3330,−0.3333,−0.4000)
(1.0, 1.0, 1.0) − 4.5313 (−0.3125,−0.3125,−0.3125)
————————- ( Table 7.3.2 ) —————————————-

Conclusions

The numerical results show that the suggested algorithm is effective for finding
of the approximate global maximizers for real valued IPH functions over SA.
Given the upper bound on the number of iterations, computing time can be
very short. From the above problems and their optimal solutions we conclude
that when the coefficient matrix A over SA approaches to the coefficient matrix
A0 over the unit simplex S−, the global maxima of the objective functions over
SA approaches to global maxima of these functions over the unit simplex S−.
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