
International Journal of Applied Mathematics
————————————————————–
Volume 26 No. 4 2013, 411-424
ISSN: 1311-1728 (printed version); ISSN: 1314-8060 (on-line version)
doi: http://dx.doi.org/10.12732/ijam.v26i4.1

A NEW WEIGHTED CONJUGATE GRADIENT METHOD

Issam A.R. Moghrabi

MBA Office/M.I.S. Department
College of Business Administration

Gulf University for Science and Technology (GUST)
P.O. Box 7207, Hawally 32093, KUWAIT

Abstract: A new weighted multi-update conjugate gradient method is pro-
posed for unconstrained optimization which is considered as memoryless vari-
able metric methods. It is derived for inexact line searches and evaluated numer-
ically against Shanno’s two memoryless quasi-Newton methods. The numerical
results indicate that, in general, the new method is numerically superior to
Shanno’s methods.

AMS Subject Classification: 65K10
Key Words: unconstrained optimization, conjugate gradient methods, vari-
able metric methods, multiple update methods

1. Introduction

The Conjugate Gradient (CG) methods were first used to solve the general
unconstrained minimization problem by Fletcher and Reeves [8] in 1964. They
are still preferred to the more rapidly convergent Quasi-Newton methods (QN)
for problems of high dimensionality since they only require storage of few vectors
of length n unlike the O(n2) QN methods. This is one justification for further
improving on the existing CG methods. We seek greater efficiency here by
modifying Shanno’s algorithms, at the expense of storing two O(n) vectors.
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For a given symmetric positive definite matrix A, the finite set of non-null
vectors d1, d2, d3, . . . dk is said to be conjugate if

dTi Adk, for all i 6= k. (1)

It is well known that such vectors are linearly independent.
The CG-methods are iterative and generate a sequence of approximation

to the minimum xmin of a scalar function f(x) of the vector variable x. The
sequence xk is defined by

xk+1 = xk + λkdk (2)

and
dk+1 = −gk+1 + βkdk, (3)

where gk is the gradient of f(x), λk is a positive scalar chosen to minimize f(x)
along the search direction dk, and αk is defined by

βk = (yTk gK+1)/(y
T
k dk), (4)

where yk = gk+1 − gk, and the definition of αk in (4) is that due to Hestenes
and Stiefel [9].

Perry [15] derived a CG algorithm as follows: he noted that in (3) the scalar
βk was chosen to make dk and dk+1 conjugate using an exact line search (ELS).
Since, in general, line searches are not exact, Perry rewrote (3) in view of this
assumption as

dk+1 = −[1− (dky
T
k )/(y

T
k dk)]gk+1. (5)

The projection matrix multiplying gk+1 is not of full rank; hence, (5) is
modified to

dk+1 = −[1− (vky
T
k )/(y

T
k vk) + (vkv

T
k )/(v

T
k yk)]gk+1 = Qk+1gk+1, (6)

where vk = xk+1 − xk.
Perry gave other reasons to support his choice of the new term in (6). First,

the matrix Qk+1 satisfies a relation similar to, but not identical with, the quasi-
Newton (QN) condition, namely

QT
k+1yk+1 = vk. (7)

Also, (6) reduces to (5) if an ELS is carried out on that iteration.
Perry’s limited experiments with his algorithm (six test functions with n ≤

4) showed that it performs only slightly better than the standard CG-method.
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2. Memoryless Quasi-Newton Methods in CG Methods

2.1. Shanno’s Method

Shanno [17] addressed the issue that (6) does not satisfy the actual QN-condition,
which requires an update to the approximation of the inverse Hessian Hk+1 in
such a way as to satisfy

HT
k+1yk = vk. (8)

He also pointed out that the matrix Qk+1 is not necessarily symmetric or
positive definite so that (6) may not define a downhill direction. Hence, he sym-
metrized Qk+1by adding an appropriate term. Specifically, Shanno proposed:

Q+
k+1 = [1− (vky

T
k )/(y

T
k vk)− (ykv

T
k )/(y

T
k vk) + (vkv

T
k )/(y

T
k vk)]. (9)

But this new symmetric matrix satisfies neither (7) nor (8), so again a
modified version was derived as follows

Qk+1 = 1− [(vky
T
k + ykv

T
k )/v

T
k yk] + [1 + (yTk yk/v

T
k yk)][vkv

T
k /(v

T
k yk)]. (10)

This form of the projection matrix Qk+1 has a special relationship with the
BFGS updated formula

Hk+1 = Hk−(Hkykv
T
k +vky

T
k Hk)/v

T
k yk+[1+yTk Hkyk/v

T
k yk][vkv

T
k /v

T
k yk]. (11)

It is then easily seen that (10) is equivalent to (11) with Hk replaced with I.
In fact, a similar dual relationship to (10)-(11) can be exhibited for any member
of Broyden’s θ-class update, [5].

The CG-method, which is referred to as a memoryless BFGS method defined
by (10), namely

dk+1 = −Q′

k+1gk+1 (12)

reduces again to (5) assuming ELS. Moreover, it does not require storage of the
matrix Q′k+1 since

dk+1 = −gk+1 − [(1 + yTk yk/v
T
k yk)(v

T
k gk+1/v

T
k yk) (13)

−(yTk gk+1/v
T
k yk)]vk + (vTk yk)yk.

Hence, no additional information is needed to compute dk+1 beyond that
required by the standard CG-method.
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2.2. Shanno’s Self-Scaling Conjugate Gradient Method

The idea of self-scaling was originally developed in a series of papers by Oren
[12], [13] and Oren and Spedicato [14]. Considering Broyden’s θ-class of algo-
rithms, Oren established in [8] the modification of the Broyden update formula
to give

Hk+1 = [Hk − (Hkyky
T
k Hk)/(y

T
k Hkyk) + θkωkω

T
k ]ηk + (vkv

T
k )/(vkT yk), (14)

where
wk = (yTk Hkyk)

1/2[vk/v
T
k yk −Hkyk/y

T
k Hkyk, (15)

and θk is a free parameter; for BFGS, θk = 1 and ηk is the scaling factor defined
by

ηk = (vTk yk)/(y
T
k Hkyk) (16)

as quoted in [14].
However, it seems natural to scale the CG-method on every iteration by

using relation (13): this amounts to substituting I for Hk in (14). Thus, Shanno
defined a modified CG-method with Hk replaced by I and

dk+1 = −(vTk yk/y
T
k yk)gk+1 (17)

−(2vTk gk+1/v
T
k yk − yTk gk+1/y

T
k yk)vk + (vTk gk+1/y

T
k yk)yk.

This corresponds to scaling the memoryless BFGS (10) and (12) by ηk.
Unfortunately, Shanno found in [15] that this modified CG-method did not

produce good results as the one defined by (13).

2.3. A Conjugate Gradient Method As A Memoryless Variable

Metric Update

A new family of variable metric (VM) methods can be obtained by multiplying
Oren’s update (14) at each iteration by a scalar σk > 0 such that

σk = 1/ηk, (18)

which yields

Hk+1 = H + [(2yTk Hkyk)/y
T
k vk)

2vkv
T
k [Hkykv

T
k + vky

T
k Hk]/y

T
k vk. (19)

The parameter σk is added to make the sequence invariant to scaling the
objective function by a constant. Thus, it is reasonable to ensure scaling of the
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sequence by substituting σk, defined in (18), into (19). Using I for Hk in the
right hand side of (19) we get the following new memoryless VM-method

dk+1 = −Hk+1gk+1 (20)

or, by substitution for Hk+1:

dk+1 = −gk+1 − [2yTk ykv
T
k gk+1)/(y

T
k vk)

2(yTk gk+1)/(y
T
k vk)]vk (21)

+(vTk gk+1)(v
T
k yk)]yk.

We also note that if vkTgk+1 = 0 (for E.L.S), then (21) reduces to

dk+1 = −gk+1 + (yTk gk+1)/(v
T
k yk)dk (22)

which is the standard Hestenes and Stiefel CG-method [12] and therefore has n-
step convergence to the minimum of a quadratic function. Thus the CG-method
is defined precisely by the new VM update (19), where the approximation to
the inverse Hessian is reset to the identity matrix at every step.

3. Double Update Memory Variable Metric Methods

3.1. Beal’s Retart Critrion and Shanno’s Double Update

Memoryless Quasi-Newton Algorithms

Analysis of the rate of convergence for the CG-algorithm defined by (2)-(4)
demonstrated that these algorithms generally exhibit a linear rate of conver-
gence unless restarted (generally every n steps) with direction dt = −gt, (see
[12]). As the step in the direction of the negative gradient frequently produces
a very small reduction in the objective function, Beale [1] derived a restart cri-
terion which has frequently improved convergence rate properties, but allows
the restart step to use the computed direction dt rather than restarting with
−gt subsequent non-restart steps are defined by:

dk+1 = −gk+1 + βkdk + γkdt, (23)

where

βk = (yTk gk+1)/(d
T
k yk) (24)

and

γk = (yTt gk+1)/(d
T
t yt), (25)
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for k = t+ 1, t+ 2, . . . , t+ n− 1.
However, in [10] this restart procedure was triedwith disappointing numer-

ical results. Powell [16] suggests a modification to the Beal’s restart procedure
with the update (23) every n steps or whenever

| gTk+1gk |≥ 0.2 | gTk+1gk+1 | . (26)

Since successive gradients are necessarily orthogonal in Beale’s method with
ELS whenf(x) is quadratic. The condition (26) restricts convergence towards
a point with a non-zero gradient.

Restarting may also be appropriate when the direction (23) is not suffi-
ciently downhill. Powell, therefore, recommends restarting whenever

−1.0 | gTk+1gk |≥ dTk+1gk+1 ≥ −0.8 | gTk+1gk+1 | . (27)

Computational results in [14] show that Beale’s method with Powell’s restart-
ing criterion is consistently, though not markedly, superior to the CG-method
with Fletcher’s restarting technique (i.e., restarting with −gk every n steps).

Following the good published performance of the Powell restart procedure
[last ref.], Shanno then examined the three-term recurrence (23) on which it is
based: this took particular account of the dual CG-VM relationship studied in
(10) and (11). Thus, (23) is rewritten as:

dk+1 = −[I(dky
T
k /d

T
k yk)(dty

T
k /d

T
t yt)]gk+1 − Pk+1gk+1, (28)

where t is the index of the last restart and the matrix Pk+1 uses information
from two prior points xk and xt in Beal’s method we recall that the information
gathered at xt is critical and must be retained. At the same time, the storage
requirement for the CG-algorithm must stay within order n locations. Hence,
Shanno defined, for k > t

H ′

t = [I
vty

T
t + ytv

T
t

vTt yt
+ (1 +

yTt yt

vTt yt
)
vTt vt

vTt yt
(29)

and

H ′

k+1 = H ′

t −
vky

T
k H

′

t +H ′

tykv
T
k

vTk yk
+ (1 +

yTk H
′

tyk

vTk yk
)
vkv

T
k

vTk yk
. (30)

The search direction at xk+1 is then found by setting

dk+1 = −H ′

k+1gk+1 (31)

= −H ′

tgk+1 +
vTk gk+1

vTk yk
H ′

tyk

−((1 +
yTk H

′

tyk

vTk yk
)
vTk gk+1

vTk yk
−

yTk H
′

tgk+1

vTk yk
)vk.
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The vector H′tgk+1 and H′tyk are defined by

H ′

tgk+1 = gk+1 −
vTt gk+1

vTt yt
yk + ((1 +

yTt yt

vTt yt
)
vTt gk+1

vTt yt
−

yTt gk+1

vTt yt
)vt (32)

and

H ′

tyt = yt −
vTt yk
vTt yt

yt (33)

+

(

(1 +
vTt yt

vTt yt
)
vTt yk
vTt yt

−
yTt yk
vTt yt

)

vt.

In implementing this algorithm additional storage is required to store vec-
tors (32) and (33). The required vectors are thus xk+1, xk, gk+1, gk,dk,dt, and yt
(a total storage still of order n) while (31)-(33) is a direct two-vector analogue
of (10).

Another far more successful search direction, proposed by Shanno, is gen-
erated by using Oren’s update (14) in (28), yields for k > t

H ′

t = [I −
vtytT ytvtT

vTt yt
+

yty
T
t

vTt yt
∗
vtv

T
t

vTt yt
]ηt +

vtv
T
t

vTt yt
. (34)

Shanno therefore suggested scaling the matrix H′t with

ηt = (vTk yk)/(y
T
t yt) (35)

but not the matrix Hk+1. In this case the two additional vectors are defined by

H ′

tgk+1 = ηtgk+1 −
vTt gk+1

yTt yt
yt + (

2vTt gk+1

vTt yt
−

vTt gk+1

yTt yt
) (36)

and

H ′

tyk = ηtyk −
vTt yk
yTt yt

yt + (
2vTt yk
vTt yt

−
yTt yk
yTt yt

). (37)

However, he also tested the application of the Flecher [8] scaling in his
numerical trials. Consequently, he proposed using only the scaled H′t at restart
steps, and at each non-restart step to scale according to the following Flecher
scaling criterion:

d′k+1 = [2(fk+1 − fk)/d
T
k+1gk+1]dk+1. (38)

Finally, we outline how Shanno implemented his algorithms.
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Given x1, set

d1 = −g1/(g
T
1 g1) (39)

and for k = 2, the algorithms are restarted according to Powell’s restarting
criterion (26) or, by default, every n iterations. For the double update BFGS
algorithm the restarting directions are defined by (13): the other steps use (31)
and (33) and they are scaled by (38). However, for the scaled double update
algorithm the restarting direction are defined by (17). The other steps use
(31),(36) and (37) and they are also scaled by (38).

Again, for a quadratic function, Shanno proved in [17] that his algorithms
reduce to the Beale’s restarting CG-algorithm provided, ELS are used.

3.2. Variable-Storage Conjugate-Gradient Methods

Two new interesting CG-methods, developed in the 1983, are the VM-CG
method of Buckley and LeNir [6] and the memoryless QN-method of Shanno.
These algorithms both require storage of O(n)and in theory and in practical
tests converge faster than the standard CG-methods.

Buckley and LeNir [6] mixed CG and VM method is based on the idea of
variable storage requirement and on Shanno’s idea of modifying a standard CG
direction into QN-like form. Their algorithm can be viewed as an extension of
Shanno’s double update algorithm to a multiple update algorithm [18].

Buckley showed that Shanno’s method is more efficient than his earlier
algorithm. We therefore consider modifying Shanno’s double update algorithm
which is still the basis for the Buckley-LeNir algorithm.

3.3. A New Double Update Memoryless Variable Metric Algorithm

In view of the dual CG-VM relationship we observe that a new double update
memoryless VM-algorithm can be obtained by using the new family of updates
defined in (19). We observe that the standard CG-method can be obtained
from (19) provided that the approximation to the inverse Hessian is indeed
updated at every step but always from the identity matrix so that the matrix
H′t becomes

H ′

t = 1−
vtyt + ytv

T
t

vTt yt
+

2yTt yt(vvv
T
t )

(vTt yt)
2

. (40)

Hence

H ′

k+1 = H ′

t −
vky

T
k H

′

t +H ′

tykv
T
k

vTk yk
+

2(yTk H
′

tyk)(vkv
T
k )

(vTk yk)
2

. (41)
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So that the new search direction, in this case is defined by:

dk+1 = −H ′

k+1gk+1 (42)

= H ′

tgk+1 +
vTk gk+1

vTk yk
H ′

tyk − (
2yTk H

′

tyk

vTk yk
−

yTk H
′

tgk+1

vTk yk
)vk, (43)

where the two additional vectors are defined by

H ′

tgk+1 = gk+1 −
vTt gk+1

vTt yt
yt + (

2(yTt yt)(v
T
t gk+1)

(vTt yt)
2

−
vTt gk+1

vTt yt
)vt

and

H ′

tyk = yk −
vTt yk

vTt yt
yt + (

2(yTt yt)(v
T
t yk)

(vTt yt)
2

−
yTt yk

vTt yt
)vt. (44)

Theorem 1. The new algorithm reduces to Beale’s method for quadratic

functions and with ELS.

Proof. To show that we proceed as follows: From (42) and assuming ELS,
we obtain

dk+1 = −H ′

tgk+1 + [(yTk H
′

tgk+1)/(v
T
k yk)]vk.

We also note that for a quadratic function

gk+1 = Axk+1 + b = A(xt+1 +

k
∑

i=t+1

vi) + b = gt+1 +

k
∑

i=t+1

Avi. (45)

Hence, for ELS on a quadratic function

vTt gk+1 = vTt gk+1 = 0, (46)

for i = t+ 1, . . . , k.
Thus, from (45), we have

H ′

tgk+1 = gk+1 − [yTt gk+1/v
T
t yt]vt. (47)

Substituting (47) in (45) we get

dk+1 = −gk+1 +
yTt gg+1

vTt yt
vt +

yTk gk+1

vTk yk
vk −

(yTt gk+1)(y
T
k vt)

(vTk yk)(v
T
t yt)

vk. (48)

Since the conjugacy ensures that:

yTk vt = 0, (49)
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then (48) reduces to

dk+1 = −gk+1 +
yTt gk+1

vTt yt
vt +

yTk gk+1

vTk yk
vk. (50)

Thus, the search direction (50) is identical to the search direction of Beal’s
method, defined in (23), and hence the proof is complete.

This new algorithm is implemented such that the direction dk+1 is in fact
defined by (21) at each restart step, and no further scaling is used.

But for each non-restart step dk+1 is scaled according to (38). Hence, the
same restarting criterion is employed as in Shanno’s algorithms so that their
respective practical performances are readily compared.

3.4. Line Search Criterion

For Shanno’s memoryless QN-algorithm it is necessary to ensure that

vTk yk > 0 (51)

for k > t in order to maintain positive definite updating, and hence that a
downhill direction dk+1 is obtained. However, condition (51) is, in practice,
generally replaced by a slightly stronger line search criterion, namely that line
searches are terminated when both

| dTk gk+1 |< ρ1 | d
T
k gk |

and
fk+1 − fk < ρ2v

T
k gk, (52)

where these conditions are sufficient to ensure convergence of any descent
method, as quoted in [18]. For all his algorithms, Shanno found that ρ2 = 0.0001
works satisfactorily, but ρ1 is the critical and sensitive parameter. He found
that ρ1 = 0.1 was best for algorithms (13) and (17) and we therefore use the
same two values for our new algorithm defined in (45).

4. Numerical Results

In order to assess the performance of the new algorithm (MNEWH), five CG-
algorithms are tested on a collection of thirty varied dimensionality test prob-
lems. All the algorithms use exactly the same linear search strategy, which is a
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cubic fitting technique. All algorithms (except the second version of Hestenes-
Stiefel CG-method) in this paper use the initial search direction (39) as defined
by Shanno in [17]. The comparative performance of the algorithms are evalu-
ated by considering both the total number of function evaluations (NOF) and
the total number of iterations (NOI). Whereas NOF is the best measure of ac-
tual work done it is dependent on the linear search and the accuracy required;
NOI is preferred by some authors for this reason, but the requirement for higher
accuracy (and so high NOF) can even reduce NOI. Both should therefore be
taken into account.

Five methods are tested: (i) the Shanno CG-method defined by (13)
(MBFGS), (ii) the Shanno CG-method defined by (17) (MOREN), (iii) the new
CG-method defined by (42) (MNEWH), and (iv) the first version of Hestenes-
Stiefel CG-method (HS1). Each of these is restarted every n iterations or when-
ever (26) is satisfied, with

dk+1 = −gk+1[(d
T
k dk)/(g

T
k+1gk+1)]. (53)

The fifth algorithm is the second version of Hestenes-Stiefel CG-method
(HS2) which restarts with –g after every n iterations. As may be expected the
HS2 method becomes increasingly inefficient as dimensionality n is increased,
but the complete results for these five algorithms are presented in the table
below.

Analysis of this table shows that the MNEWHmethod has a clear advantage
over Shanno’s methods, especially when compared with the MOREN method
where it saves overall about 58% in NOF; however, it only saves overall about
8% in NOF over the MBFGS method so that we confirm Shanno’s conclusions
in [17] about the respective performance of his own two methods. In considering
NOI, all the three algorithms perform about the same, though MNEWH has
slight advantage over the other two. The table also confirms that the MNEWH
algorithm is indeed superior to the standard Hestenes-Stiefel CG-method for
both versions.

In conclusion, we have considered a memoryless new CG algorithm, which
is clearly superior to Perry’s algorithm and Shanno’s MOREN method (on
the same convergence criterion). The O(n) double-updating MOREN method
should be usually the first choice when the O(n2) QN methods just require
backing store; however, the number of vectors required in O(n) methods must
become significant when back storing again becomes necessary because of the
dimensionality of the problem. Based on our experience with these method, the
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preferred methodsfor increasing n are in succession: QN methods, MNEWH,
MOREN and the standard CG. There is therefore no single best method to be
recommended for all n.

Function N HS1 HS2 MBFGS MOREN MNEWH
NOI(NOF) NOI(NOF) NOI(NOF) NOI(NOF) NOI(NOF)

ROSEN 2 30(73) 34(87) 30(73) 34(170) 31(75)

CUBIC 2 17(50) 19(53) 17(50) 19(128) 17(50)

BEALE 2 10(27) 10(26) 10(27) 10(43) 10(27)

BOX 2 11(57) 6(47) 11(57) 11(61) 11(57)

FREUD 2 10(21) 8(22) 10(21) 10(53) 10(21)

BIGGS 3 16(60) 14 (42) 19 (65) 12(42) 17(60)

RECIPE 3 5(19) 5(16) 5(19) 5(21) 5(19)

HELICAL 3 37(81) 23(53) 36(77) 29(127) 46(99)

POWL3 3 17(39) 18(40) 17(41) 14(48) 16(37)

POWELL 4 63(174) 65(170) 40(105) 59(277) 29(75)

WOOD 4 27(62) 26(60) 23(54) 23(83) 23(51)

DIXON 10 23(49) 20(43) 23(49) 23(69) 23(49)

OREN 10 14(61) 10(45) 13(55) 14(52) 14(60)

EX-
POWELL

20 58(175) 60(162) 62(177) 42(174) 40(109)

EX-
WOOD

20 22(54) 47(102) 25(59) 25(103) 26(57)

NON-
DIGN

20 27(67) 19(52) 27(67) 27(134) 24(56)

SUM-
QUAR

25 8(38) 8(44) 9(40) 8(31) 8(38)

OREN 30 29(102) 18(71) 25(95) 25(76) 27(96)

TRI-
DIGN

30 30(62) 30(61) 30(62) 31 (91) 31(64)

SHALLOW 40 8(25) 9(21) 8(25) 8(31) 8(25)

FULL 40 44(91) 44(89) 46(95) 46(134) 46(95)

OREN 50 33(108) 24(90) 36(138) 35(115) 34 (123)

EX-
ROSEN

60 27(74) 17(52) 27 (74) 29(136) 32(91)

EX-
WOOD

60 34(82) 65(138) 32(76) 34(125) 33(82)

WOLFE 80 49(99) 49(99) 49(99) 49(147) 49(99)

NON-
DIGN

90 27(69) 22(60) 27(69) 27(155) 24 (58)

EX-
ROSEN

100 30(75) 17 (52) 27(68) 29 (128) 30(74)

EX-
POWELL

100 46(123) 105(276) 66(207) 46(201) 41(111)

EX-
WOOD

100 35(82) 103(213) 32(76) 36(140) 39(91)

EXROSEN 1000 27(70) 18(55) 27(70) 30(127) 33(82)
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Total HS1 HS2 MBFGS MOREN MNEWH

NOI 814 913 809 790 777

NOF 2167 2341 2190 3222 2031

Overall comparative performance

MNEWH HS1 HS2 MBFGS MOREN

NOI 100 104.7 117.5 104.1 101.6
NOF 100 106.6 115.2 107.8 158.6

All the algorithms terminate when ||gk+1||2 < 10−7.
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