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Abstract: We consider the initial-boundary value problem for the degenerate
nonlinear dissipative wave equation of Kirchhoff type:

utt −

(
∫ 1

0
|ux(x, t)|

2dx

)γ

uxx + ut + f(u) = 0,

where f(u) is like as |u|pu. If the initial energy is appropriately small and γ ≥ 1
and p > 2γ, then we obtain some optimal time decay estimates of the solution
u = u(t).
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1. Introduction

In this paper we investigate the decay properties of solutions to the initial-
boundary value problem for the following degenerate nonlinear dissipative wave
equation of Kirchhoff type: for 0 < x < 1, 0 < t < ∞,
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utt −

(
∫ 1

0
|ux(x, t)|

2dx

)γ

uxx + ut + f(u) = 0 , (1)

u(x, 0) = u0(x) , ut(x, 0) = u1(x) , 0 < x < 1 ,

u(0, t) = u(1, t) = 0 , 0 < t < ∞ ,

where u = u(x, t) is an unknown real value function and γ ≥ 1 and f(u) is a
C1-function satisfying

0 ≤ F (u) ≤ k0f(u)u , F (u) ≡

∫ u

0
f(η) dη , (2)

|f(u)| ≤ k1|u|
p+1 , 0 ≤ f ′(u) ≤ k2|u|

p , p > 0

with positive constants k0, k1, k2 > 0.

Equation (1) describes small amplitude vibrations of an elastic string (see
Kirchhoff [6] for the original equation).

Through this paper, we will use the following energy E(u, ut) and functional
H(u, ut) associated with (1):

E(u, ut) ≡
1

2
‖ut‖

2 +
1

2(γ + 1)
‖ux‖

2(γ+1) +

∫

Ω
F (u) dx , (3)

H(u, ut) ≡
‖uxt‖

2

‖ux‖2γ
+ ‖uxx‖

2 , (4)

where the symbol ‖ · ‖ is the usual norm of L2 = L2(Ω) with Ω = (0, 1). We
often denote E(t) ≡ E(u(t), ut(t)) and H(t) ≡ H(u(t), ut(t)) for simplicity.
In particular, we will use the following notations related with the initial data
{u0, u1}:

E(0) ≡
1

2
‖u1‖

2 +
1

2(γ + 1)
‖u0, x‖

2(γ+1) +

∫

Ω
F (u0) dx , (5)

H(0) ≡
‖u1, x‖

2

‖u0, x‖2γ
+ ‖u0, xx‖

2 . (6)

When the initial data belong to usual Sobolev spaces, Arosio & Garabaldi
[1] have studied on the unique local weak solutions for the Kirchhoff type wave
equations (also see [2], [3] and the references cited therein).

In the non-degenerate case, Hosoya and Yamada [5] have proved global
existence theorem and they have derived that the energy has an exponential
decay estimate under some small data conditions.
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On the other hand, in the degenerate case and f(u) ≡ 0, many authors have
studied the global existence theorem and the decay estimates of solutions (see
[9], [11] and the references cited therein).

In the previous paper [10], we have shown the existence of the unique global
solution of (1) and we have derived the decay estimate of the energy E(t)
associated with (1).

Theorem 1.1. Suppose that

γ ≥ 1 and p+ 1 > 2γ (7)

and the initial data {u0, u1} belong to H2 ∩H1
0 ×H1

0 with u0 6= 0 and {u0, u1}
are appropriately small in the sense of (19). Then, the problem (1) admits a

unique global solution u(t) in the class C0([0,∞);H2 ∩H1
0 )∩C1([0,∞);H1

0 ) ∩

C2([0,∞);L2), ‖ux(t)‖ 6= 0, and the energy E(t) satisfies E(t) ≤ C(1+ t)−1− 1
γ ,

that is,

0 < ‖ux(t)‖
2 ≤ C(1 + t)

− 1
γ , (8)

‖ut(t)‖
2 ≤ C(1 + t)

−1− 1
γ for t ≥ 0 , (9)

where C is some positive constant.

The purpose of this paper is to derive the decay estimates which are more
detailed the previous estimates (8) and (9). In particular, we will show the
lower decay estimates of ‖ux(t)‖ and ‖uxx(t)‖, and we will improve the decay
estimate of ‖ut(t)‖. In order to obtain these estimates, we use the new identity
(33) associated with the H2-norm of the solution u(t) and the function α(t)
given by (29).

Our main result is as follows.

Theorem 1.2. Suppose that the assumption of Theorem 1.1 is fulfilled

and

γ ≥ 1 and p > 2γ (10)

and the initial energy E(0) is appropriately small in the sense of (37). Then,

the solution u(t) of (1) satisfies that

C−1(1 + t)−
1
γ ≤ ‖ux(t)‖

2 , ‖uxx(t)‖
2 ≤ C(1 + t)−

1
γ , (11)

‖ut(t)‖
2 ≤ C(1 + t)−2− 1

γ for t ≥ 0 , (12)

where C is some positive constant.
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The notations we use in this paper are standard. The symbol (·, ·) means
the inner product in L2 = L2(Ω), Ω = (0, 1), or sometimes duality between the
space X and its dual X ′. We denote the Sobolev-Poincaré constant by c∗, that
is, ‖v‖p ≤ c∗‖vx‖ for 1 ≤ p ≤ ∞, where ‖ · ‖p is the usual Lp-norm (‖ · ‖ = ‖ · ‖2
if p = 2). We denote (a)+ = max{0, a}.

2. Preliminaries

By standard arguments, we have the following local existence theorem (see [1],
[3], [10] and the references cited therein). We omit the proof.

Proposition 2.1. Suppose that the initial data {u0, u1} belong to H2 ∩
H1

0 ×H1
0 and u0 6= 0. Then, the problem (1) admits a unique local solution u(t)

in the class C([0, T );H2 ∩ H1
0 ) ∩ C1([0, T );H1

0 ) ∩ C2([0, T );L2) for some T ≡
T (‖u0‖H2 , ‖u1‖H1) > 0. Moreover, if ‖ux(t)‖ > 0 and ‖u(t)‖H2+‖ut(t)‖H1 < ∞
for t ≥ 0, then we can take T = ∞.

In what follows, we denote ‖ux(t)‖
2 by M(t) for simplicity. From the defi-

nition (3) of the energy E(t) ≡ E(u(t), ut(t)), it is easy to see that

M(t) ≡ ‖ux(t)‖
2 ≤ (2(γ + 1)E(t))

1
γ+1 . (13)

By simple calculation, we see the energy E(t) has the energy identity

d

dt
E(t) + ‖ut(t)‖

2 = 0 (14)

or

E(t) +

∫ t

0
‖ut(s)‖

2 ds = E(0) . (15)

Indeed, multiplying (1) by ut and integrating over Ω or Ω × (0, t), we obtain
(14) or (15). Moreover, applying energy method together with the Nakao’s
inequality (see citeNa78 and [8]), we have the following decay estimate of the
energy E(t) (see [7] and [10] for the proof).

Proposition 2.2. Let u(t) be a solution of (1). Then the energy E(t)
satisfies

E(t) ≤
(

E(0)
−

γ

γ+1 + d−1
1 (E(0)

γ

γ+1 + 1)−1(t− 1)+
)−

γ+1
γ

(16)

for t ≥ 0, where d1 is some positive constant.
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Moreover, we see immediately that the inequality (13) and the energy decay
(16) yield the following estimates.

Corollary 2.3. Let u(t) be a solution of (1) and E(0) ≤ 1.
(i) If q > γ, then

∫ t

0
M(s)q ds ≤ d2E(0)

q−γ
γ+1 . (17)

(ii) If q > γ/2, then

∫ t

0
(1 + s)−

1
2M(s)q ds ≤ d3E(0)

1
γ+1

(q− γ

2
)
, (18)

where d2 and d3 are some positive constants.

3. Global Existence

In this section we will prove Theorem 1.1.

Proposition 3.1. Let u(t) be a solution and M(t) ≡ ‖ux(t)‖
2 > 0.

Suppose that γ ≥ 1 and p+ 1 > 2γ and u0 6= 0 and

I(0) ≡ 2 (2(γ + 1)E(0))
γ−1

2(γ+1)

(

H(0) + d4E(0)
p+1−2γ

γ+1

)
1
2
<

2

γ + 2
, (19)

where d4 is some positive constant given by (27). Then, it holds that

H(t) ≤ H(0) + d3E(0)
p+1−2γ

γ+1 , (20)

|M ′(t)|

M(t)
≤ I(0) <

2

γ + 2
. (21)

Proof. Multiplying (1) by (−2uxxt/M(t)γ) and integrating it over Ω, we
have

d

dt
H(t) + 2

(

1 +
γ

2

M ′(t)

M(t)

)

‖uxt(t)‖
2

M(t)γ
= −

2

M(t)γ
(f(u), uxxt)

≤
2k2

M(t)γ
‖u(t)‖p∞‖ux(t)‖‖uxt(t)‖ ≤ 2k2c

p
∗

(

M(t)p+1−γ ‖uxt(t)‖
2

M(t)γ

)

1
2

. (22)



354 K. Ono

We observe from (4) and (15) that

|M ′(t)|

M(t)
≤ 2

‖uxt(t)‖

‖ux(t)‖
= 2

(

M(t)γ−1 ‖uxt(t)‖
2

M(t)γ

)

1
2

(23)

≤ 2 (2(γ + 1)E(0))
γ−1

2(γ+1) H(t)
1
2 . (24)

In what follows, we may assume that E(0) ≤ 1.
Under the assumption (19), putting

T ≡ sup{t | 2 (2(γ + 1)E(0))
γ−1

2(γ+1) H(s)
1
2 <

2

γ + 2
, 0 ≤ s < t} , (25)

then we see that T > 0.
If T < ∞, then

2 (2(γ + 1)E(0))
γ−1

2(γ+1) H(T )
1
2 =

2

γ + 2
. (26)

For 0 ≤ t ≤ T , we observe from (23)–(26) that

1 +
γ

2

|M ′(t)|

M(t)
≥ 1−

γ

2

2

γ + 2
=

2

γ + 2
,

and from (22) that

d

dt
H(t) +

4

γ + 2

‖uxt(t)‖
2

M(t)γ
≤ 2k2c

p
∗

(

M(t)p+1−γ ‖uxt(t)‖
2

M(t)γ

)

1
2

,

and from the Young inequality that

d

dt
H(t) ≤

γ + 2

4
(k2c

p
∗)

2M(t)p+1−γ .

Moreover, if p+ 1 > 2γ, we have from (17) in Corollary 2.3 that

H(t) ≤ H(0) + d4E(0)
p+1−2γ

γ+1 , d4 =
γ + 2

4
(k2c

p
∗)

2d2 . (27)

Then, we have from (19) that

2 (2(γ + 1)E(0))
γ−1

2(γ+1) H(t)
1
2 ≤ I(0) <

2

γ + 2
for 0 ≤ t < T , (28)

which is a contradiction to (26), and hence, we see that T = ∞, and we conclude
that (27) and (28) hold true for t ≥ 0.
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Proof of Theorem 1.1. By u0 6= 0, we see M(0) > 0. If there exists T > 0
such that M(t) > 0 for 0 ≤ t < T and M(T ) = 0, then since H(t) ≤ C < ∞ by
(20), we have that limt→T ‖uxt(t)‖ = 0, and hence, we see that {u(T ), ut(T )} =
{0, 0}.

On the other hand, by the backward uniqueness to (1) with {u(T ), ut(T )} =
{0, 0} (see [9] and [10]), we observe that u ≡ 0 on [0, T ], which is a contradiction
to the assumption u0 6= 0. Thus, we conclude that M(t) > 0 for t ≥ 0, and
moreover, from Proposition 3.1 we obtain the a-priori estimate ‖u(t)‖H2 +
‖ut(t)‖H1 ≤ C < ∞ for t ≥ 0. Therefore, the local solution u(t) of (1) in
the sense of Proposition 2.1 can be continued globally in time. Also, from
Proposition 2.2 we obtain the decay estimates (7) and (8) for t ≥ 0.

4. Proof of Theorem 1.2

In this section, let u(t) be the global solution of (1) given by Theorem 1.1.
In order to get the sharp decay estimates of ‖u(t)‖H2 and ‖ut(t)‖, we use the
following function α(t) defined by

α(t) ≡ sup
0≤s≤t

{

(1 + s)
‖ut(s)‖

2

M(s)γ+1

}

. (29)

Proposition 4.1. Suppose that p > 2γ. Then, it holds that

‖uxx(t)‖
2

M(t)
≤ G(t) ≤ 2G(0) + d5E(0)

p−γ

γ+1α(t) , (30)

where d5 is some positive constant given by (35) and

G(t) ≡
‖uxx(t)‖

2

M(t)
+

2

M(t)γ+2
((f(u))x, ux) +Q(t) (≥ 0) , (31)

Q(t) ≡
1

M(t)γ+2

(

M(t)‖uxx(t)‖
2 −

(

1

2
M ′(t)

)2
)

(≥ 0) . (32)
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Proof. Since we observe from (1) that

M(t)γ
d

dt
‖uxx(t)‖

2 = 2 (M(t)γuxx, uxxt)

= −2‖uxt(t)‖
2 − 2(uxtt, uxt) + 2

d

dt
(f(u), uxx)− 2((f(u))t, uxx) ,

M(t)γ‖uxx(t)‖
2 = 2(M(t)γuxx, uxx)

= −
1

2
M ′(t) + ‖uxt(t)‖

2 −
1

2
M ′′(t) + (f(u), uxx) ,

we have

d

dt

(

‖uxx(t)‖
2

M(t)
+

2

M(t)γ+1
((f(u))x, ux)

)

= −2Q(t)−R(t) + S(t) , (33)

where Q(t) is given by (32) and

R(t) ≡
1

M(t)γ+2

(

M(t)
d

dt
‖uxt(t)‖

2 +M ′(t)

(

‖uxt(t)‖
2 −

1

2
M ′′(t)

))

,

S(t) ≡
1

M(t)γ+2

(

(2γ + 1)M ′(t)(f(u), uxx)− 2M(t)((f(u))t, uxx)
)

.

On the other hand, we have

d

dt
Q(t) = −(γ + 2)

M ′(t)

M(t)
Q(t)

+
1

M(t)γ+2

(

M(t)
d

dt
‖uxt(t)‖

2 +M ′(t)‖uxt(t)‖
2 −

1

2
M ′(t)M ′′(t)

)

= −(γ + 2)
M ′(t)

M(t)
Q(t) +R(t) . (34)

Adding (33) to (34), we have

d

dt
G(t) = −2

(

1 +
γ + 2

2

M ′(t)

M(t)

)

Q(t) + S(t) .

Moreover, since we observe from (21) that

1 +
γ + 2

2

|M ′(t)|

M(t)
≥ 0 , Q(t) ≥ 0 , ((f(u))x, ux) =

∫

Ω
f ′(u)|ux|

2 dx ≥ 0 ,
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and

|S(t)| ≤
2(2γ + 1)k2
M(t)γ+2

‖ut(t)‖‖uxx(t)‖‖u(t)‖
p
∞‖ux(t)‖

2

+
2k2

M(t)γ+1
‖u(t)‖p∞‖ut(t)‖‖uxx(t)‖

≤ c2

(

‖ut(t)‖
2

M(t)γ+1

‖uxx(t)‖
2

M(t)
M(t)p−γ

)

1
2

with c2 = 4(γ + 1)k2c
p
∗, we have

d

dt
G(t) ≤ c2

(

‖ut(t)‖
2

M(t)γ+1
G(t)M(t)p−γ

)

1
2

or

2
d

dt
G(t)

1
2 ≤ c2

(

(1 + t)−1M(t)p−γ
)

1
2

(

(1 + t)
‖ut(t)‖

2

M(t)γ+1

)

1
2

.

Thus, we obtain from (29) and (18) that if p > 2γ,

2G(t)
1
2 ≤ 2G(0)

1
2 + c2α(t)

1
2

∫ t

0
(1 + s)−

1
2M(s)

p−γ

2 ds

≤ 2G(0)
1
2 + c2d2E(0)

1
γ+1

(p
2
−γ)

α(t)
1
2 ,

and hence,

G(t) ≤ 2G(0) + d5E(0)
p−2γ
γ+1 α(t) , d5 =

c22d
2
2

2
, (35)

which implies the desired estimate (30).

Proposition 4.2. Suppose that p > 2γ and E(0) is appropriate small like

as (37). Then, it holds that

‖ut(t)‖
2

M(t)γ+1
≤ C(1 + t)−1 , ‖ut(t)‖

2 ≤ C(1 + t)
−2− 1

γ . (36)

Proof. Multiplying (1) by (2ut/M(t)γ+1) and integrating it over Ω, we
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have

d

dt

‖ut(t)‖
2

M(t)γ+1
+ 2

(

1 +
γ + 1

2

M ′(t)

M(t)

)

‖ut(t)‖
2

M(t)γ+1

= −
M ′(t)

M(t)
−

2

M(t)γ+1
(f(u), ut)

≤ 2
‖ut(t)‖

M(t)
γ+1
2

‖uxx(t)‖

M(t)
1
2

M(t)
γ

2 + 2cp+1
∗ k1

‖ut(t)‖

M(t)
γ+1
2

M(t)
p−γ

2 ,

and from (21) that

d

dt

‖ut(t)‖
2

M(t)γ+1
+

2

γ + 2

‖ut(t)‖
2

M(t)γ+1

≤ 2
‖ut(t)‖

M(t)
γ+1
2

(

‖uxx(t)‖

M(t)
1
2

+ cp+1
∗ k1M(t)

p−2γ
2

)

M(t)
γ

2 ,

and from the Young inequality and (15) and (30) that

d

dt

‖ut(t)‖
2

M(t)γ+1
+ b

‖ut(t)‖
2

M(t)γ+1

≤ 2(γ + 2)

(

‖uxx(t)‖
2

M(t)
+ c

2(p+1)
∗ k21M(t)p−2γ

)

M(t)γ

≤
(

c3 + 2(γ + 2)d5E(0)
p−2γ
γ+1 α(t)

)

M(t)γ

with b = 1/(γ + 2) and c3 = 2(γ + 2)(2G(0) + c
2(p+1)
∗ k21(2(γ + 1)E(0))

p−2γ
γ+1 ),

where we used (15) and (30) at the last inequality. We observe that

∫ t

0
e−b(t−s)M(s)γ ds = (

∫ t/2

0
+

∫ t

t/2
) e−b(t−s)M(s)γ ds

≤ e−
b
2
t (2(γ + 1)E(0))

γ
γ+1

t

2
+

1

b

(

2(γ + 1)E(
t

2
)

)
γ

γ+1

≤ d6(1 + t)−1,

where d6 is some positive constant independent of E(0) when E(0) ≤ 1. Thus,
we have

‖ut(t)‖
2

M(t)γ+1
≤

‖u1‖
2

M(0)γ+1
e−bt + d6

(

c3 + 2(γ + 2)d5E(0)
p−2γ
γ+1 α(t)

)

(1 + t)−1
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and

α(t) ≤ c4
‖u1‖

2

M(0)γ+1
+ d6

(

c3 + 2(γ + 2)d5E(0)
p−2γ
γ+1 α(t)

)

with c4 = supt≥0(1 + t)e−bt. If E(0) is small like as

2(γ + 2)d5d6E(0)
p−2γ
γ+1 < 1, (37)

then we obtain

α(t) ≤ C or
‖ut(t)‖

2

M(t)γ+1
≤ C(1 + t)−1

which gives the desired estimate (36) with (8).
As a corollary of Proposition 4.1 and Proposition 4.2, we obtain the follow-

ing estimate.

Proposition 4.3. Under the assumption of Proposition 4.2, it holds that

‖uxx(t)‖
2

M(t)
≤ C , ‖uxx(t)‖

2 ≤ C(1 + t)
− 1

γ . (38)

We will derive the lower decay estimate of the function M(t).

Proposition 4.4. Under the assumption of Proposition 4.2, it holds that

M(t) ≡ ‖ux(t)‖
2 ≥ C ′(1 + t)

− 1
γ (39)

with some positive constant C ′.

Proof. Multiplying (1) by (2ut/M(t)γ+2) and integrating it over Ω, we
have

d

dt

(

‖ut(t)‖
2

M(t)γ+2
+

1

M(t)

)

+ 2

(

1 +
γ + 2

2

M ′(t)

M(t)

)

‖ut(t)‖
2

M(t)γ+2

= −2
M ′(t)

M(t)2
−

2

M(t)γ+2
(f(u), ut)

≤ 2

(

‖ut(t)‖
2

M(t)γ+2

)

1
2
(

‖uxx(t)‖
2

M(t)
M(t)γ−1

)

1
2

+ 2cp+2
∗

(

‖ut(t)‖
2

M(t)γ+2

)

1
2
(

M(t)p−2γM(t)γ−1
)

1
2
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and from (21) and the Young inequality that

d

dt

(

‖ut(t)‖
2

M(t)γ+2
+

1

M(t)

)

≤ C
‖uxx(t)‖

2

M(t)
M(t)γ−1 + CM(t)p−2γM(t)γ−1

≤ CM(t)γ−1 ≤ C(1 + t)
−1+ 1

γ ,

where we used the estimates (16) and (38) at the last inequality.
Thus, we obtain

‖ut(t)‖
2

M(t)γ+2
+

1

M(t)
≤ C + C

∫ t

0
(1 + s)

−1+ 1
γ ds ≤ C(1 + t)

1
γ ,

and hence, we see M(t) ≥ C ′(1 + t)−
1
γ for t ≥ 0.

Proof of Theorem 1.2. The upper decay estimate (11) follows from (38) in
Proposition 4.3. The lower decay estimate 11 follows from (39) in Proposition
4.4. The sharp decay estimate (12) follows from (36) in Proposition 4.2.

The proof of Theorem 1.2 is now completed.
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