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Abstract: In this paper we investigate the existence and non existence of
solutions to the following singular semilinear elliptic system:


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
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





−∆u = λv + vp

|x|α in Ω

−∆v = λu+ uq

|x|β
in Ω

u ¿0, v ¿0 in Ω
u = v = 0 on ∂Ω,

where Ω is a smooth bounded domain in R
N (N ≥ 3), 0 ∈ Ω, λ > 0, 0 < α, β <

N and p, q > 1 satisfy the condition N−α
p+1 + N−β

q+1 > N − 2. The existence of a
nontrivial solution is obtained by variational methods.
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1. Introduction

In this paper we are concerned with the following system of singular elliptic
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equations










−∆u = λv + vp

|x|α in Ω

−∆v = λu+ uq

|x|β
in Ω

u = v = 0 on ∂Ω,

(1)

where Ω is a smooth bounded domain in R
N (N ≥ 3), 0 ∈ Ω, λ > 0,

0 < α, β < N and p, q > 1 satisfy the condition N−α
p+1 + N−β

q+1 > N − 2.

Hulshof, Mitidieri and Van der Vorst [8] (see also [7]) considered the prob-
lem (1) in the case α = β = 0, and proved the existence of at least one nontrivial

solution with positive components (u, v) ∈
(

C2 (Ω) ∩ C1
(

Ω
))2

. A nonexistence
result is obtained in [11] by Mitidieri.

Recently, Figueiredo, Peral and Rossi [4] treated the problem (1) where
λ = 0 and proved the following result:

Let us assume that p, q, α, β verify

N − α

p+ 1
+
N − β

q + 1
> N − 2, (2)

1

p+ 1
+

1

q + 1
< 1 (3)

and

q + 1 <
2 (N − β)

N − 4
and p+ 1 <

2 (N − α)

N − 4
if N ≥ 5. (4)

Then, there exist infinitely many strong solutions and at least one positive
strong solution of (1)

In the present paper, we shall prove that if (2) holds, the system (1) has
at least one positive strong solution for any λ ∈ (0, λ0) and has no positive
solutions for any λ ≥ λ1, where λ0 is a positive constant to be specified later,
and λ1 is the first eigenvalue of −∆.

The main result of the paper is stated in the following theorem:

Theorem 1.1. Let 0 < α, β < N and p, q > 1 satisfy

N − α

p+ 1
+
N − β

q + 1
> N − 2.

Then, there exists λ0 > 0 such that for all λ ∈ (0, λ0) , problem (1) has at least
one positive strong solution.
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Theorem 1.2. Under the hypothesis of Theorem 1.1, problem (1) has no
nontrivial positive solutions for any λ > λ1.

The rest of the paper is organized as follows: in Section 2 we recall some
preliminaries results. In Section 3 we give the proof of Theorem 1.1 and in
Section 4 we give a non existence result.

2. Preliminaries

Our approach is based on a linking theorem due to Li and Willem [10]. Let
E be a Hilbert space and I : E −→ R be a strongly indefinite functional near
zero in the sense that there exist two subspaces E+and E− with E = E+⊕E−

such that the functional I is positive definite on E+ and negative definite on
E− (near zero). We assume also that there are sequences of subspaces of finite
dimensions E±

n such that

E±
1 ⊂ E±

2 ⊂ E±
3 . . . , and ∪∞

n=1E
±
n = E±.

Denote
En = E+

n ⊕ E−
n , and In = I|En

.

We have
E1 ⊂ E2 ⊂ E3 . . . , and ∪∞

n=1En = E.

Definition 2.1. We say that I satisfies the (PS∗) condition with respect
to the scale of subspaces (En)n if every sequence (zn)n such that

zn ∈ En, |In(zn)| ≤ C,
∣

∣

∣

〈

I
′

n(zk), η
〉∣

∣

∣
≤ εn ‖η‖E ∀η ∈ En, εn → 0,

contains a subsequence which converges to a critical point of I.

We need the following result of Li and Willem [10]:

Theorem 2.2. Let I ∈ C1(E,R) such that:
A1) I has a local linking at the origin, i.e. for some r > 0

I(z) ≥ 0 for z ∈ E+, and I(z) ≤ 0 for z ∈ E−, with ‖z‖E ≤ r,

A2) I maps bounded sets into bounded sets,
A3) I(z) −→ −∞ as ‖z‖ −→ ∞, z ∈ E+

n ⊕ E−, for every n ∈ N,
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A4) I satisfies the (PS∗) condition with respect to the scale of subspaces
(En)n.

Then, I has a nontrivial critical point.

Solutions of (1) will be found as critical points of the corresponding func-
tional in suitable spaces obtained us the domains of fractional powers of the
Laplace operator [2]. For this purpose, let As = (−∆)s/2 for 0 ≤ s ≤ 2, and let

Es = D
(

(−∆)s/2
)

. Es is a Hilbert space with the inner product

〈u, v〉Es =

∫

Ω
AsuAsv dx.

Its associated norm is denoted by ‖u‖Es . The Poincaré’s inequality for the
operator As is

‖Asu‖L2(Ω) ≥ λ
s/2
1 ‖u‖L2(Ω) for all u ∈ Es. (5)

The Sobolev embedding theorem for spaces Es says that

Es →֒ Lr (Ω) if
1

r
≥

1

2
−

s

N
,

and the embedding is compact if the previous inequality is strict.

We recall the following result from [4]:

Proposition 2.3. Let q > 1, β > 0 and s > 0 such that

q + 1 <
2 (N − β)

N − 2s
. (6)

Then, the inclusion map i : Es → Lq+1
(

Ω, |x|−β
)

is well defined and compact.

For numbers s > 0 and t > 0 with s + t = 2 we define the Hilbert space
E = Es × Et and the bilinear form B : E × E → R by the formula

B ((u, v) , (φ,ψ)) =

∫

Ω

(

AsuAtψ +AsφAtv
)

dx.

The form B is continuous and symmetric and there exists a selfadjoint bounded
linear operator L : E → E so that

B (z, η) = (Lz, η)E for all z, η ∈ E.
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Here (., .)E denotes the natural inner product on E induced by Esand Et. We
can also define the quadratic form Q : E → R associated to B and L as

Q(z) =
1

2
(Lz, η)E =

∫

Ω
AsuAtv dx, for all (u, v) ∈ E.

Following De Figueiredo and Felmer [2], we can define the subspaces

E+ =
{

(u,As−tu) | u ∈ Es
}

, E− =
{

(u,−As−tu) | u ∈ Es
}

(7)

which give the natural splitting E = E+⊕E−. The spaces E+ and E− are the
positive and negative eigenspaces of L, they are consequently orthogonal with
respect to the bilinear form B, and we also have

1

2
‖z‖2E = Q(z+)−Q(z−),

where z = z+ + z−, z+ ∈ E+ and z− ∈ E−.

Proposition 2.4. Suppose Ω is a bounded domain in R
N , r > 1, σ > 0

and u ∈ Lr
(

Ω, |x|−σ). Then,

(
∫

Ω
|u|2 dx

)
1
2

≤ C

(

∫

Ω

|u|r+1

|x|σ
dx

)
1

r+1

. (8)

Proof. We have

(
∫

Ω
|u|2 dx

)
1
2

=

(

∫

Ω

|u|2

|x|
2σ
r+1

|x|
2σ
r+1 dx

)
1
2

.

By the Hölder’s inequality, we have

(
∫

Ω
|u|2 dx

)
1
2

≤

(

∫

Ω

|u|r+1

|x|σ
dx

)
1

r+1 (∫

Ω
|x|

2σ
r−1 dx

)
r−1

2(r+1)

,

since N + 2σ
r−1 > 0, we get

(
∫

Ω
|u|2 dx

)
1
2

≤ C

(

∫

Ω

|u|r+1

|x|σ
dx

)
1

r+1

.

Remark 2.5. C is a generic positive constant.
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3. The Existence Result

In order to set up our problem variationally, we shall use fractional Sobolev
spaces introduced in the previous section. First, we define the functional as-
sociated to the Hamiltonian. We will choose the numbers s and t defining the
orders of the involved Sobolev spaces. From the fact that p, q > 1 and the
inequality (2), we can choose s, t > 0 such that s+ t = 2, s > t, and

q + 1 <
2 (N − β)

N − 2s
, p+ 1 <

2 (N − α)

N − 2t
(9)

and
1

q + 1
>

1

2
−

s

N
,

1

p+ 1
>

1

2
−

t

N
. (10)

These last inequalities and Sobolev embedding theorem yield the compact in-
clusions:

Es →֒ Lq+1(Ω, |x|−β), Et →֒ Lp+1(Ω, |x|−α),

and
Es →֒ L2(Ω), Et →֒ L2(Ω).

Second, for z = (u, v) ∈ E, we define the functional I : E → R as

I (z) =

∫

Ω
AsuAtvdx−

λ

2

∫

Ω
(|u|2 + |v|2)dx

−
1

p+ 1

∫

Ω

vp+1

|x|α
dx−

1

q + 1

∫

Ω

uq+1

|x|β
dx. (11)

The functional I is of class C1 and
(

I ′ (z) , η
)

=

∫

Ω

(

AsuAtψ +AsφAtv
)

dx− λ

∫

Ω
(uφ+ vψ)dx

−

∫

Ω

(

vpψ

|x|α
+
uqφ

|x|β

)

dx (12)

for z = (u, v) ∈ E and η = (φ,ψ) ∈ E.

Definition 3.1. We say that z = (u, v) ∈ E is a (s, t)-weak solution of (1)
if z is a critical point of I, i.e. for every (ϕ,ψ) ∈ E we have



























∫

Ω
AsuAtψ dx = λ

∫

Ω
vψ dx+

∫

Ω

(

vpψ

|x|α

)

dx ∀ψ ∈ Et

∫

Ω
AsϕAtv dx = λ

∫

Ω
uϕ dx+

∫

Ω

(

uqϕ

|x|β

)

dx ∀ϕ ∈ Es.

(13)
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We have the following regularity result. It is an adapted version of Theorem
1.2 in [4]:

Proposition 3.2. Suppose that (u, v) ∈ E is a weak solution of (1) .
Then u ∈W 2,a (Ω) and v ∈W 2,b (Ω) for every

1 < a <
2N

p (N − 2t) + 2α
and 1 < b <

2N

q (N − 2s) + 2β
.

Hence, (u, v) is in fact a strong solution of (1).

Proof. Since (u, v) ∈ E is a weak solution, we have for every (ϕ,ψ) ∈ E:

∫

Ω

(

AsuAtψ +AsϕAtv − λuϕ− λvψ −
vpψ

|x|α
−
uqφ

|x|β

)

dx = 0.

Put ψ = 0 in this last equality. Then we have

∫

Ω

(

AsϕAtv − λuϕ−
uqϕ

|x|β

)

dx = 0 for all ϕ ∈ Es.

If we take ϕ ∈ H2(Ω) ∩H1
0 (Ω), then we have:

∫

Ω
AsϕAtv dx = −

∫

Ω
∆ϕv dx.

Let b > 1 and let r be such that
1

r
>
N − 4s

2N
. By the Hölder inequality we

have

∫

Ω

∣

∣

∣

∣

uq

|x|β

∣

∣

∣

∣

b

dx =

∫

Ω

|u|qb

|x|βb
dx

≤

(
∫

Ω

(

uqb
)

r
qb
dx

)
qb

r
(
∫

Ω
|x|−

βbr

r−qbdx

)
r−qb

r

≤ C‖u‖qbLr(Ω) iff
βbr

r − qb
< N,

βbr

r − qb
< N =⇒

βbr

N
< r − qb

=⇒
βb

N
+
qb

r
< 1.
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This last inequality combined with the inequality
1

r
>
N − 4s

2N
yields:

1 < b <
2N

q (N − 2s) + 2β
.

Then,
uq

|x|β
∈ Lb(Ω) if 1 < b <

2N

q (N − 2s) + 2β
.

From the basic elliptic theory (see for example [6]), there exists a function
w ∈W 2,b(Ω) such that

{

−∆w = λu+ uq

|x|β
in Ω

w = 0 on ∂Ω

which, by integrating by parts, yields to:

−

∫

Ω
∆wϕ dx−

∫

Ω

(

λu+
uq

|x|β

)

ϕ dx = −

∫

Ω
∆ϕw dx

−

∫

Ω

(

λu+
uq

|x|β

)

ϕ dx

= 0.

Hence,

∫

Ω
(v − w)∆ϕ dx = 0 with v = w = 0 on ∂Ω, which means that v ≡ w.

We conclude then, that v ∈W 2,b(Ω). The proof for u is similar.

Now, we prove that the assumptions of Theorem 2.2 are satisfied:

Lemma 3.3. Assume (2) and let p, q > 1 and α, β < N. Then there exists
a λ∗ > 0 such that for all λ ∈ (0, λ∗) the functional I has a local linking at the
origin.

Proof. For z = (u, v) ∈ E+ we have

I (z) =
1

2
‖z‖2E −

λ

2

∫

Ω
(|u|2 + |v|2)dx−

1

p+ 1

∫

Ω

vp+1

|x|α
dx−

1

q + 1

∫

Ω

uq+1

|x|β
dx.

Using Sobolev imbedding and (5), we obtain

I (z) ≥
1

2
‖z‖2E −

λ

2

(

1

λs1
‖u‖2Es +

1

λt1
‖v‖2Et

)

− C
(

‖v‖p+1
Et + ‖u‖q+1

Es

)

≥

(

1

2
−

λ

2min {λs1, λ
t
1}

)

‖z‖2E − C ‖z‖θE , for some θ > 2. (14)
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Put λ∗ = min
{

λs1, λ
t
1

}

, then there is an r > 0 such that I(z) ≥ 0 for all
λ ∈ (0, λ∗) and z ∈ E+ with ‖z‖E ≤ r.

Next, for z = (u, v) ∈ E−, we have

I (z) = −
1

2
‖z‖2E −

λ

2

∫

Ω
(|u|2 + |v|2)dx

−
1

p+ 1

∫

Ω

vp+1

|x|α
dx−

1

q + 1

∫

Ω

uq+1

|x|β
dx

≤ −
1

2
‖z‖2E . (15)

Hence, I(z) ≤ 0 if z ∈ E− and ‖z‖E ≤ r .

Lemma 3.4. I maps bounded sets into bounded sets.

Proof. Let B ⊂ Es×Et be a bounded set, i.e. there exists C > 0 such that

‖u‖Es ≤ C and ‖v‖Et ≤ C, for all z = (u, v) ∈ B. (16)

Now, for z = (u, v) ∈ B we have

|I (z)| ≤

∫

Ω

∣

∣AsuAtv
∣

∣ dx+
λ

2

∫

Ω
(|u|2 + |v|2)dx

+
1

p+ 1

∫

Ω

|v|p+1

|x|α
dx+

1

q + 1

∫

Ω

|u|q+1

|x|β
dx.

By the Hölder inequality and the embedding theorem, we obtain

|I (z)| ≤ ‖Asu‖L2(Ω)

∥

∥Atv
∥

∥

L2(Ω)
+
λ

2
(‖u‖2L2(Ω) + ‖v‖2L2(Ω))

+
1

p+ 1
‖v‖2

Lp+1(Ω,|x|−α) +
1

q + 1
‖u‖q+1

Lq+1(Ω,|x|−β)

≤ ‖u‖Es ‖v‖Et + C
(

‖u‖Es + ‖v‖Et + ‖v‖p+1
Et + ‖u‖q+1

Es

)

. (17)

From (16) and (17), we get

|I (z)| ≤ C for all z ∈ B.

Lemma 3.5. Let n ∈ N be fixed and let zk ∈ E+
n ⊕E−, where E+

n denotes
an n-dimensional subspace of E+. Then

I (zk) → −∞ if ‖zk‖E → ∞.
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Proof. By (7), zk may be written as

zk = (uk, A
s−tuk) + (vk,−A

s−tvk) with uk ∈ Es
n and vk ∈ Es

n.

Thus,

I (zk) =

∫

Ω
|Asuk|

2 dx−

∫

Ω
|Asvk|

2 dx

−
λ

2

∫

Ω
(|uk + vk|

2 +
∣

∣As−t (uk − vk)
∣

∣

2
)dx

−
1

p+ 1

∫

Ω

∣

∣As−t (uk − vk)
∣

∣

p+1

|x|α
dx−

1

q + 1

∫

Ω

|uk + vk|
q+1

|x|β
dx

= ‖uk‖
2
Es − ‖vk‖

2
Es −

λ

2

∫

Ω
(|uk + vk|

2 +
∣

∣As−t (uk − vk)
∣

∣

2
)dx

−
1

p+ 1

∫

Ω

∣

∣As−t (uk − vk)
∣

∣

p+1

|x|α
dx−

1

q + 1

∫

Ω

|uk + vk|
q+1

|x|β
dx.

Note that

‖zk‖E → ∞ ⇐⇒ ‖uk‖
2
Es + ‖vk‖

2
Es → ∞. (18)

Now, we deduce that:
1) If ‖uk‖Es ≤ C, then ‖vk‖Es → ∞ and then it is easy to see that I (zk) →

−∞.

2) If ‖uk‖Es → ∞, then from (8) we estimate

∫

Ω

|uk + vk|
q+1

|x|β
dx ≥ C

(
∫

Ω
|uk + vk|

2 dx

)
q+1
2

≥ C ‖uk + vk‖
q+1
L2(Ω)

,

and

∫

Ω

∣

∣As−t (uk − vk)
∣

∣

p+1

|x|α
dx ≥ C

(
∫

Ω

∣

∣As−t (uk − vk)
∣

∣

2
dx

)
p+1
2

≥ C
∥

∥As−t (uk − vk)
∥

∥

p+1

L2(Ω)
,

and since s > t, by (5) we have

∫

Ω

∣

∣As−t (uk − vk)
∣

∣

p+1

|x|α
dx ≥ C ‖uk − vk‖

p+1
L2(Ω)

.
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Hence, for some θ > 2, we obtain the estimate

I (zk) ≤ ‖uk‖
2
Es − C

(

‖uk + vk‖
θ
L2(Ω) + ‖uk − vk‖

θ
L2(Ω)

)

. (19)

The function ϕ (x) = xθ is convex, then 1
2 (ϕ (x) + ϕ (y)) ≥ ϕ

(

1
2 (x+ y)

)

and
hence

I (zk) ≤ ‖uk‖
2
Es − C

(

‖uk + vk‖L2(Ω) + ‖uk − vk‖L2(Ω)

)θ

≤ ‖uk‖
2
Es − C ‖uk‖

θ
L2(Ω) .

We know that the norms ‖.‖Es and ‖.‖L2(Ω) are equivalent on Es
n. Thus, we

conclude that also in this case I (zk) → −∞.

Lemma 3.6. There exists λ∗∗ > 0 such that for all λ ∈ (0, λ∗∗) the
functional I satisfies the (PS∗) condition.

Proof. Let (zn) be a sequence of E such that

zn ∈ En, |In(zn)| ≤ C,

and
∣

∣

∣

〈

I
′

n(zk), η
〉
∣

∣

∣
≤ εn ‖η‖E , for all η ∈ En, and εn → 0. (20)

As we did in [9], and following the spirit of [5, 3], we base our proof on the fact
that zn ∈ E. We first show that (zn) is uniformly bounded in E. Taking η = zn
we have for zn = (un, vn) ∈ E

I(zn)−
1

2

(

I ′(zn), zn
)

=

(

1

2
−

1

p+ 1

)
∫

Ω

|vn|
p+1

|x|α
dx

+

(

1

2
−

1

q + 1

)
∫

Ω

|un|
q+1

|x|β
dx

≤ C + εn ‖zn‖E .

Now, since p, q > 1 we have

∫

Ω

|vn|
p+1

|x|α
dx ≤ C + εn (‖un‖Es + ‖vn‖Et) (21)

and
∫

Ω

|un|
q+1

|x|β
dx ≤ C + εn (‖un‖Es + ‖vn‖Et) . (22)
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Note that As−t (un) ∈ Et. Thus, choosing η =
(

0, As−t (un)
)

in (20) we get

∫

Ω
|Asun|

2 dx ≤ λ

∫

Ω

∣

∣vnA
s−t (un)

∣

∣ dx+

∫

Ω

|vn|
p
∣

∣As−t (un)
∣

∣

|x|α
dx

+ εn
∥

∥As−t (un)
∥

∥

Et ,

and hence, by the Hölder inequality

‖un‖
2
Es ≤ λ ‖vn‖L2(Ω)

∥

∥As−t (un)
∥

∥

L2(Ω)

+

(

∫

Ω

|vn|
p+1

|x|α
dx

)
p

p+1
(

∫

Ω

∣

∣As−t (un)
∣

∣

p+1

|x|α
dx

)
1

p+1

+ εn ‖un‖Es .

Using the Sobolev embedding theorem, (5) and (21) we obtain

‖un‖
2
Es ≤

λ

λ21
‖vn‖Et ‖un‖Es + (C + εn (‖un‖Es + ‖vn‖Et))

p

p+1 ‖un‖Es

+ εn ‖un‖Es ,

and thus

‖un‖Es ≤
λ

λ21
‖vn‖Et + εn (‖un‖Es + ‖vn‖Et)

p

p+1 + C. (23)

Similarly, η =
(

At−s (vn) , 0
)

in (20) we obtain as above

‖vn‖Et ≤
λ

λ21
‖un‖Es + εn (‖un‖Es + ‖vn‖Et)

q

q+1 + C. (24)

Joining (23) and (24), we finally get, for some τ < 1,

(

1−
λ

λ21

)

(‖un‖Es + ‖vn‖Et) ≤ εn (‖un‖Es + ‖vn‖Et)
τ + C.

Taking λ∗∗ = λ21, thus ‖un‖Es + ‖vn‖Et is bounded for all λ ∈ (0, λ∗∗) .

Now, we prove that (zn) converges strongly in E. Since (zn) = (un, vn) is
bounded in E = Es ×Et, there exists a subsequence denoted again by (un, vn)
which converges weakly to (u, v) in Es ×Et. The mappings As : Es −→ L2 (Ω)
and A−t : L2(Ω) → Et are continuous isomorphisms, thus we get As(un−u)⇀
0 in L2 (Ω) and As−t(un − u) ⇀ 0 in Et. Since Et →֒ Lp+1(Ω, |x|−α) and
Et →֒ L2(Ω) compactly, we conclude that As−t(un − u) −→ 0 strongly in
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Lp+1(Ω, |x|−α) and L2(Ω). Choosing η = (0, As−t(un − u)) ∈ Es × Et in (20)
we obtain

∣

∣

∣

∫

Ω

(

|Asun|
2 −AsunA

su
)

dx
∣

∣

∣
≤ λ

∫

Ω

∣

∣vnA
s−t (un − u)

∣

∣ dx

+

∫

Ω

|vn|
p
∣

∣As−t (un − u)
∣

∣

|x|α
dx+ εn

∥

∥As−t (un − u)
∥

∥

Et

≤ λ ‖vn‖2
∥

∥As−t (un − u)
∥

∥

2

+ ‖vn‖
p
Lp+1(Ω,|x|−α)

∥

∥As−t (un − u)
∥

∥

Lp+1(Ω,|x|−α)

+ εn ‖(un − u)‖Es .

Observe that the right hand-side of the above inequality converges to 0, thus
∫

Ω
|Asun|

2 dx −→

∫

Ω
|Asu|2 dx.

Similarly, we prove that the sequence (vn) converges strongly in Et.

Proof of Theorem 1.2. Put λ0 = min {λ∗∗, λ∗} . Conditions of Theorem 2.2
are satisfied for all λ ∈ (0, λ0). Then, we find a critical point (u, v) for the
functional I which yields a weak solution, and by Proposition 3.2 we conclude
that this solution is strong. Finally, by the maximum principle, it follws that
u, v are strictly positive in Ω.

4. The Nonexistence Result

Let us now denote by ϕ1 the first eigenfunction of −∆ on Ω with Dirichlet
boundary conditions.

Proof of Theorem 1.2. We argue by contradiction. Suppose that (u, v) is a
nontrivial positive solution of problem (1) if

λ > λ1. (25)

Multiplying equations of the system (1) by ϕ1 and integrating by part we find

λ1

∫

Ω
vϕ1dx = −

∫

Ω
∆vϕ1dx = λ

∫

Ω
uϕ1dx+

∫

Ω

uqϕ1

|x|β
dx (26)

and

λ1

∫

Ω
uϕ1dx = −

∫

Ω
∆uϕ1dx = λ

∫

Ω
vϕ1dx+

∫

Ω

vpϕ1

|x|α
dx. (27)
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Since v > 0 , from (27) we obtain

∫

Ω
vϕ1dx ≤

λ1

λ

∫

Ω
uϕ1dx. (28)

Inserting (28) into (26) , we get

λ

∫

Ω
uϕ1dx+

∫

Ω

uqϕ1

|x|β
dx ≤

λ21
λ

∫

Ω
uϕ1dx.

Therefore,
(

λ21 − λ2

λ

)
∫

Ω
uϕ1dx ≥ 0. (29)

A contradiction with (25) .
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