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Abstract: The aim of this paper is to give some new approximations for
the exact solutions of the Wick-type stochastic generalized fractional KdV-
Burgers-Kuramoto equations with time-fractional derivatives. The homotopy
analysis method (HAM) is employed to obtain approximate analytical solu-
tions for the exact solutions of fractional KdV-Burgers-Kuramoto equations
with time-fractional derivatives. Moreover, by using white noise functional
analysis, Hermite transform and inverse Hermite transform we will obtained
new exact solutions of the Wick-type stochastic generalized fractional KdV-
Burgers-Kuramoto equations with time-fractional derivatives. Finally, by the
help of the mapping relation constructed between the general formal solutions of
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the Wick-type stochastic generalized fractional KdV-Burgers-Kuramoto equa-
tions and the solutions of the auxiliary equations various types of the Wick-type
stochastic generalized fractional KdV-Burgers-Kuramoto equations are derived.

AMS Subject Classification: 60H30, 60H15, 35R60
Key Words: fractional KdV-Burgers-Kuramoto equations, time-fractional
derivative, white noise, stochastic fractional equation, homotopy analysis, Her-
mite transform

1. Introduction

In this paper we obtain white noise functional solutions for the Wick-type
stochastic generalized fractional KdV-Burgers-Kuramoto equations with space-
fractional derivatives. The generalized fractional KdV-Burgers-Kuramoto equa-
tions with time-fractional derivatives is given by

∂αu

∂tα
+ u

∂u

∂x
+ a(t)

∂2u

∂x2
+ b(t)

∂3u

∂x3
+ c(t)

∂4u

∂x4
= 0,

t > 0, 0 < α 6 1,

(1)

where a(t), b(t) and c(t) are bounded measurable or integrable functions on R+.
Nonlinear partial differential equations (PDEs) are encountered in various fields
as physics, applied mathematics, engineering, biology and chemistry. Most non-
linear models of real life problems are still very difficult to solve, neither theoret-
ically nor numerically. In the past decades, both mathematicians and physicists
have devoted considerable effort to the study of explicit solutions to nonlinear
integer-order differential equation. In recent years, an important progress has
been made in the research of the exact solutions of nonlinear (PDEs). To seek
various exact solutions of multifarious physical models described by nonlinear
PDEs, various methods have been proposed. Recently, many researchers pay
more attention to the study of the random waves, which are important sub-
jects of stochastic partial differential equation (SPDE). M. Wadati [19] first
answered the interesting question, “How does external noise affect the motion
of solitons?” and studied the diffusion of soliton of the KdV equation under
Gaussian noise, which satisfies a diffusion equation in transformed coordinates.
Wadati and Akutsu also studied the behaviors of solitons under the Gaus-
sian white noise of the stochastic KdV equations with and without damping
[21]. In addition, a nonlinear partial differential equation which describes wave
propagations in random media was presented by Wadati [20]. Debussche and
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Printems ([6, 7]), de Bouard and Debussche ([2, 3]), Konotop and Vazquez [14],
recently, Ugurlu and Kaya [18] gave the tanh function method, Xie first intro-
duced Wick-type stochastic KdV equations on white noise space and showed the
auto-Backlund transformation and the exact white noise functional solutions in
[24], furthermore, Chen and Xie ([4, 5]) and Xie ([22, 23, 24, 25]) researched
some Wick-type stochastic wave equations using white noise analysis method.
Eq. (1) plays a significant role in many scientific applications such as solid
state physics, nonlinear optics, chemical kinetics, etc. If Eq. (1) is considered
in random environment, we can get random fractional KdV-Burgers-Kuramoto
equations with space-fractional derivatives. In order to give the exact solutions
of random fractional KdV-Burgers-Kuramoto equations with space-fractional
derivatives, we only consider this problem in white noise environment. Wick-
type stochastic generalized fractional KdV-Burgers-Kuramoto equations with
time-fractional derivatives is given by:

Utα + U ⋄ Ux +A(t) ⋄ Ux2 +B(t) ⋄ Ux3 + C(t) ⋄ Ux4 = 0,

Uxβ =
∂βU

∂xβ
, β = α, 2, 3, 4,

(2)

where a(t), b(t) and c(t) are integrable or bounded measurable functions on R+,
”⋄” is the Wick product on the Kondratiev distribution space(S)−1 which was
defined in [13] and A(t), B(t) and C(t) are white noise functionals. Eqn.(2) can
be seen as the perturbation of the coefficients a(t), b(t) and c(t) of Eqn.(1) by
white noise functionals.

Our main interest in this work is in implementing new strategies that give
White noise functional solutions of the Wick-type two-dimensional stochastic
fractional KdV-Burgers-Kuramoto equations. The strategies that will be pur-
sued in this work are based mainly on Homotopy analysis method and Hermite
transform, both of which are employed to find White noise functional solutions
of Eqn. (2). The proposed schemes, as we believe, are entirely new and in-
troduce new solutions in addition to the well-known traditional solutions. The
ease of using these methods, to determine shock or solitary type of solutions,
shows its power.

2. White Noise Functional Solutions of Eq. (2)

Taking the Hermite transform of Eqn. (2), we get the deterministic equation:

Ũtα(x, t, z) + Ũ(x, t, z)Ũx(x, t, z) + Ã(t, z)Ũx2(x, t, z) +

+B̃(t, z)Ũx3(x, t, z) + C̃(t, z)Ũx4(x, t, z) = 0, (3)
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where z = (z1, z2, ...) ∈ (CN)c is a vector parameter. For the sake of simplicity
we denote A(t, z) = Ã(t, z), B(t, z) = B̃(t, z), C(t, z) = C̃(t, z) and u(x, t, z) =
Ũ(x, t, z). Using the homotopy analysis method (HAM) developed for integer-
order differential equation, we can find out the solution of Eqn. (3). First, we
will introduce some notions of the fractional calculus and then proceed with
the homotopy analysis method.

Definition 1. A real function h(t), such that h(t) = tph1(t), t > 0, is
said to be in the space Cµ, µ ∈ R if there exists a real number p > µ, where
h1(t) ∈ C[0,∞), and it is said to be in the space Cn

µ if and only if h(n) ∈ Cµ,
n ∈ N.

Definition 2. The Riemann-Liouville fractional integral operator Jα of
order α ≥ 0, of a function h ∈ Cµ, µ ≥ −1, is defined as

Jαh(t) =
1

Γ(α)

∫ t

0
(t− τ)α−1h(τ)dτ (α > 0),

J0h(t) = h(t), (4)

Γ(α) is the well-known Gamma function. Some of the basic properties of the
operator Jα, which we need here, are as follows:

(1) JαJβh(t) = Jα+βh(t),

(2) JαJβh(t) = JβJαh(t),

(3) Jαtγ = Γ(γ+1)
Γ(α+γ+1) t

α+γ , where β > 0, and γ > −1.

Definition 3. The fractional derivative Dα of h(t) in the Caputo sense is
defined as

Dαh(t) =
1

Γ(n− α)

∫ t

0
(t− τ)n−α−1h(n)(τ)dτ ,

for n− 1 < α ≤ n, n ∈ N , t > 0, h ∈ Cn
−1. (5)

We mention the following two basic properties of the Caputo fractional
derivative, see [17]:

(1) Let h ∈ Cn
−1, n ∈ N. Then Dαh, 0 ≤ α ≤ n is well defined and Dαh ∈

C−1.
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(2) Let n− 1 < α ≤ n, n ∈ N and h ∈ Cn
µ , µ ≥ −1. Then

(JαDα)h(t) = h(t)−
n−1∑

k=0

h(k)(0+)
tk

k!
. (6)

Consider the fractional differential equation in the following general form

N (u(x, t, z)) = 0, (7)

where N is a fractional differential operator, x and t denote independent vari-
ables, u(x, t, z) is an unknown function. For simplicity, we ignore all boundary
or initial conditions, which can be treated in the same way. Based on the con-
structed zero-order deformation equation by Liao [15], we give the following
zero-order deformation equation in the similar way,

(1− q)L(φ(x, t, z; q) − u0(x, t, z)) = qhN [φ(x, t, z; q)], (8)

where q ∈ [0, 1] is the embedding parameter, h is a non zero auxiliary parameter,
L is an auxiliary linear integer-order operator and it possesses the property
L(C) = 0, u0(x, t, z) is an initial guess of u(x, t, z), U(x, t, z; q) is a unknown
function on independent variables x, t, z, q. It is important that one has great
freedom to choose auxiliary parameter h in HAM. If q = 0 and q = 1, it holds

φ(x, t, z; 0) = u0(x, t, z), φ(x, t, z, 1) = u(x, t, z). (9)

Thus as q increases from 0 to 1, the solution φ(x, t, z; q) varies from the initial
guess u0(x, t, z) to the solution u(x, t, z). Expanding φ(x, t, z; q) in Taylor series
with respect to q, one has

φ(x, t, z; q) = u0(x, t, z) +
∞∑

m=1

um(x, t, z)qm, (10)

where

um(x, t, z) =
1

m!

∂mφ(x, t, z; q)

∂qm
|q=0 . (11)

If the auxiliary linear integer-order operator, the initial guess, and the auxiliary
parameter h are so properly chosen, the series (10) converges at q = 1, one has

u(x, t, z) = u0(x, t, z) +
∞∑

m=1

um(x, t, z). (12)



326 H.A. Ghany, S. Bendary, M.S. Mohammed

According to (11), the governing equation can be deduced from the zero-order
deformation equation (8). Define the vector

~u(x, t, z) = {u0(x, t, z), u1(x, t, z), u2(x, t, z), ....., un(x, t, z)}. (13)

Differentiating Eq. (8) m times with respect to the embedding parameter q
and then setting q = 0 and finally dividing them by m!, we have the so-called
mth-order deformation equation

L(um(x, t, z)− κmum−1(x, t, z))

=
h

(m− 1)!

∂m−1[φ1(x, t, z; q), · · · , φn(x, t, z; q)]

∂qm−1
|q=0, (14)

where

κm =

{
0 m ≤ 1,
1 m > 1.

(15)

Themth-order deformation equation (14) is linear and thus can be easily solved,
especially by means of symbolic computation software such as MATHEMAT-
ICA, MAPLE, MATHLAB and so on. To demonstrate the effectiveness of the
method, we consider Eqn. (1) with the following initial condition

u(x, 0) = k. exp{x}, k ∈ C. (16)

We choose the linear integer-order operator

L[U(x, t, z; q)] =
∂U(x, t, z; q)

∂t
. (17)

Furthermore, Eq. (3) suggests to define the nonlinear fractional differential
operator

N [U(x, t, z; q)] =
∂αU(x, t, z; q)

∂tα
+ U(x, t, z; q)

∂U(x, t, z; q)

∂x

+A(t)
∂2U(x, t, z; q)

∂x2
+B(t)

∂3U(x, t, z; q)

∂x3
+ C(t)

∂4U(x, t, z; q)

∂x4
. (18)

Using the above definition, we construct the zeroth-order deformation equation

(1− q)L(U(x, t, z; q) − u0(x, t, z)) = qhN [U(x, t, z; q)]. (19)

Obviously, when q = 0 and q = 1,

U(x, t, z; 0) = u0(x, t, z) U(x, t, z; 1) = u(x, t, z). (20)
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According to (14)-(15), we gain the mth-order deformation equation

L(um(x, t, z)− κmum−1(x, t, z))

=h{
∂αum−1(x, t, z)

∂tα
+

m−1∑

i=0

ui(x, t, z)
∂um−1−i(x, t, z)

∂x

+A(t)
∂2um−1(x, t, z)

∂x2
+B(t)

∂3um−1(x, t, z)

∂x3
+ C(t)

∂4um−1(x, t, z)

∂x4
}.

(21)

Now, the solution of Eq. (21) for m > 1 becomes

um(x, t, z) =κmum−1(x, t, z) + hL−1{
∂αum−1(x, t, z)

∂tα

+

m−1∑

i=0

ui(x, t, z)
∂um−1−i(x, t, z)

∂x
+A(t)

∂2um−1(x, t, z)

∂x2

+B(t)
∂3um−1(x, t, z)

∂x3
+C(t)

∂4um−1(x, t, z)

∂x4
}.

(22)

From (16), (20) and (22), we now successively obtain:

u0 = u(x, 0, z) = k. exp{µx+ z}, k, µ ∈ C,

u1 = hL−1{
∂αu0
∂tα

+ u0
∂u0
∂x

+A(t)
∂2u0
∂x2

+B(t)
∂3u0
∂x3

+ C(t)
∂4u0
∂x4

},

u1 =
µhk2tα

Γ(α+ 1)
. exp{2(µx+ z)} + µ2hkS1(t). exp{(µx+ z)},

u2 = u1 + hL−1{
∂αu1
∂tα

+u0
∂u1
∂x

+ u1
∂u0
∂x

+A(t)
∂2u1
∂x2

+B(t)
∂3u1
∂x3

+ C(t)
∂4u1
∂x4

},

u2 =(1 + h)u1 +
3µ2h2k3t2α

Γ(2α + 1)
. exp{3(µx+ z)}

+ [2µ3h2k2JαS1(t) + 4µ3h2k2Jα{tαS2(t)}]. exp{2(µx+ z)}

+ µ4h2kJα{S1(t)S1(t)}. exp{(µx+ z)},

· · ·
where Si(t) = A(t) + (iµ)B(t) + (iµ)2C(t), i = 1, 2, · · · .
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Special Case

If

A(t) = −µ2C(t); B(t) = 0; h = −1;

this implies that





u0 = k. exp{µx+ z}.

u1 =
µhk2tα

Γ(α+1) . exp{2(µx+ z)}

u2 =
3µ2h2k3t2α

Γ(2α+1) . exp{3(µx + z)}

+12µ3h2k2

Γ(α+1) J
α{tαC(t)}. exp{2(µx+ z)}

. . .

un = Snµ
nhnkn+1tn. exp{[n + 1](µx+ z)},

(23)

where Sn is given by

Sn = (Sn−1 + 1)

∫
tn−1Dx exp{nx}dt|t=1,x=0; S1 = 1; n > 1

So, the solution of Eqn. (3) can be written in the form

Ũ(x, t, z) =

∞∑

m=0

Smµ
mhnkm+1tm. exp{[m+ 1](µx+ z)}. (24)

Obviously, the solution given by Eqn. (24) belongs to the infinite class of
solutions for the deterministic Eqn. (3), each solution belongs to this class can
be reached by supposing some initial condition for u0(x, t) for Eqn. (1) and then
by following the above steps for this initial condition we get another solution
for Eqn. (3), and so on.

In order to get exact solutions of Eqn. (2), we will assume the following
condition:

(A):

Suppose that A(t), B(t) and C(t) satisfy that there exist a bounded open
set G ⊂ R × R+, m < ∞, n > 0 such that u(x, t, z), ut(x, t, z), ux(x, t, z),
uxx(x, t, z), uxxx(x, t, z) and uxxxx(x, t, z) are (uniformly) bounded for (x, t, z) ∈
G×Km(n), continuous with respect to(x, t) ∈ G for allz ∈ Km(n) and analytic
with respect to z ∈ Km(n), for all(x, t) ∈ G, [9, 10, 11, 12, 16].

Under condition (A), Theorem 2.1 of Xie [25] implies that there exists
U(x, t) ∈ (S)−1 such that u(x, t, z) = Ũ(x, t)(z) for all (x, t, z) ∈ G × Km(n)
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and that U(x, t) solves (2). From the above, we have that U(x, t) is the inverse
Hermite transformation of u(x, t, z). Hence, Eqn. (24) yields stochastic single
solitary solutions of Eqn. (2) as the following form:

U(x, t) =
∞∑

m=0

Smµ
mhnkm+1t⋄m ⋄ exp⋄{[m+ 1](µx+ z)}. (25)

Clearly, applying the ratio test implies that the above summations are conver-
gent.

3. Example

Since the Wick versions of functions are usually difficult to evaluate, we will
give some non-Wick versions of the solutions of Eqn. (2) in special case:





A(t) = f(t) + δ1W (t),

B(t) = g(t) + δ2W (t),

C(t) = h(t) + δ3W (t),

(26)

with f(t), g(t) and h(t) being integrable or bounded measurable functions on
R+ and δi(i = 1, 2, 3) being constants, where W (t) is Gaussian white noise,
i.e., W (t) = Ḃ(t), B(t) is a Brown motion. We have the Hermite transforms:

A(t, z) = f(t) + δ1W̃ (t, z), B(t, z) = g(t) + δ2W̃ (t, z) and C(t, z) = h(t) +

δ3W̃ (t, z), where W̃ (t, z) =
∑∞

i=1 zi
∫ t

0 ηi(s)ds, ηi(t) is defined in the second
section of [25]. In this case, we obtain the solution of Eqn. (2.1) as follows:

u(x, t, z) =
∞∑

m=0

Smµ
mhnkm+1tm. exp{ψm(x, t, z)} (27)

ψm(x, t, z) = mα∗x+ β∗z − 2γ2

∫ t

0
[g(s) + δ2W̃ (s, z)]ds + x0 + z0,

where α∗ and β∗ are arbitrary constants. From (27) and the definition of

W̃ (t, z), it is easy to prove that the condition (A) is tenable for A(t), B(t) and
C(t) in case (26). Hence, Eqn. (27) yields that the exact solution of Eqn. (2)
as follows:

U(x, t) =
∞∑

m=0

Smµ
mhnkm+1t⋄m ⋄ exp⋄{φm(x, t)} (28)
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with

φm(x, t) = mα∗x− 2γ2

{∫ t

0
g(s)ds + δ1B(t)

}
+ x0.

In terms of the equality exp⋄ {B(t)} = exp {B(t)− t2/2} [9], form (28), we have

U(x, t) =
∞∑

m=0

Smµ
mhnkm+1(t+ 0.5t2)m. exp{φm(x, t)} (29)

with

φm(x, t) = mα∗x− 2γ2

{∫ t

0
g(s)ds + δ1(B(t)− t2/2)

}
+ x0.

4. Summary and Discussion

In general, the solution of SPDE will be a stochastic distribution, and we have
to interpret possible products that occur in the equation, as one cannot in
general take the product of two distributions, in our paper, products are con-
sidered to be Wick products which overcome this difficulty through white noise
functional approach. Subsequently, we take the Hermite transform of the result-
ing equation and obtain an equation that we try to solve, where the random
variables have been replaced by complex-valued functions of infinitely many
complex variables. Finally, we use the inverse Hermite transform to obtain a
solution of the regularized, original equation [8]. Since Φ⋄(x) = Φ(x) for any
non-random function Φ(x), hence (17) are solutions of the variable coefficients
fractional KdV-Burgers-Kuramoto equation (1), where a(t), b(t) and c(t) are
bounded measurable or integrable functions on R+. And noting that there ex-
ists a unitary mapping between the Wiener white noise space and the Poisson
white noise space, we can obtain the solution of the Poisson SPDE simply by
applying this mapping to the solution of the corresponding Gaussian SPDE.
A nice and concise account of this connection was given by Benth and Gjerde
[1]. We can see it in ([21], Section 4.9) as well. Hence, we can attain stochastic
soliton solutions as we do in Section 2 if the coefficients A(t), B(t) and C(t) are
Poisson white noise functions in Eqn. (2).
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