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1. Introduction

Recently, Gabardo and Nashed [2] defined the concept of a multiresolution
analysis (MRA) where the associated translation set is a discrete set which is
not necessarily a group. More precisely, this set is of the form {0, r/N} + 2Z,
where N ≥ 1 is an integer, 1 ≤ r ≤ 2N − 1, r is an odd integer relatively
prime to N . They call this a nonuniform MRA. In this article, we construct
the nonuniform p-wavelet packets associated with nonuniform multiresolution
p-analysis.

All the definitions and properties in this section can also be found in [1, 3].
For x in R

+ and any positive integer j, we set

xj = [pjx] (mod p) , x−j = [p1−jx] (mod p) . (1.1)

Consider on R
+ the addition defined as follows:
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x⊕ y =
∑

j<0

ζjp
−j−1 +

∑

j>0

ζjp
−j

with

ζj = xj + yj (mod p) (j ∈ Z\{0}),

where ζj ∈ {0, 1, · · · , p − 1} and xj, yj are calculated by (1.1). Moreover, we
note that z = x⊖ y if z ⊕ y = x, where ⊖ denotes the subtraction modulo p in
R
+.
For x ∈ [0, 1), let

r0(x) =

{

1, x ∈ [0, 1/p),
εlp, x ∈ [lp−1, (l + 1)p−1) (l = 1, · · · , p− 1),

where εp = exp(2πi/p). The extension of the function r0 to R
+ is denoted by

the equality r0(x+ 1) = r0(x), x ∈ R
+. Then the generalized Walsh functions

{wm(x) : m ∈ Z} are defined by

w0(x) ≡ 1, wm(x) =

k
∏

j=0

(r0(p
jx))µj ,

where

m =

k
∑

j=0

µjp
j, µj ∈ {0, 1, ..., p − 1}, µk 6= 0.

For x,w ∈ R
+, let

χ(x,w) = exp(
2πi

p

∞
∑

j=1

(xjw−j + x−jwj)),

where xj, wj are given by (1.1). Note that χ(x,m/pn−1) = χ(x/pn−1,m) =
wm(x/pn−1) for all x ∈ [0, pn−1), m ∈ Z

+.
The Walsh-Fourier transform of a function f ∈ L1(R+) is defined by

f̂(ξ) =

∫

R+

f(x)χ(x, ξ)dx,

Definition 1.1. LetN be an integer, N ≥ 1, and Λ = {0, r/N}+pZ, where
r is an odd integer relatively prime to N with 1 ≤ r ≤ pN−1. A sequence {Vj :
j ∈ Z} of closed subspaces of L2(R+) will be called a nonuniform multiresolution
p-analysis associated with Λ if the following conditions are satisfied:
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(i) Vj ⊂ Vj+1, for all j ∈ Z;

(ii) f ∈ Vj if and only if f(pN ·) ∈ Vj+1;

(iii)
⋂

j∈Z Vj = {0};

(iv)
⋃

j∈Z Vj is dense in L2(R+);

(v) There exists a function ϕ ∈ V0, called the scaling function, such that
{ϕ(x ⊖ λ) : λ ∈ Λ, x ∈ R+} forms an orthonormal basis for V0.

Let Wj = Vj+1⊖ Vj , j ∈ Z. These subspaces inherit the scaling property of
Vj , namely

f ∈Wj if and only if f(pN ·) ∈Wj+1. (1.2)

Moreover, the subspacesWj are mutually orthogonal, and we have the following
orthogonal decompositions:

L2(R+) =
⊕

j∈Z

Wj = V0 ⊕ (
⊕

j≥0

Wj). (1.3)

A set of functions {ψ1, ψ2, ..., ψpN−1} in L2(R+) is said to be a set of basic
p-wavelets associated with the nonuniform multiresolution p-analysis if the col-
lection {ψl(x ⊖ λ) : 1 ≤ l ≤ pN − 1, λ ∈ Λ, x ∈ R+} forms an orthonormal
basis for W0.

In view of (1.2) and (1.3), it is clear that if {ψ1, ψ2, ..., ψpN−1} is a basic set
of p-wavelets, then

{(pN)j/2ψl((pN)jx⊖ λ) : 1 ≤ l ≤ pN − 1, j ∈ Z, λ ∈ Λ, x ∈ R+}

forms an orthonormal basis for L2(R+).

We denote ψ0 = ϕ, the scaling function, and consider pN − 1 functions ψl,
1 ≤ l ≤ pN − 1, in W0 as possible candidates for wavelets. Since 1

pNψl(
·

pN ) ∈
V−1 ⊂ V0, it follows from property (iv) of definition (1.1) that for each l,
1 ≤ l ≤ pN − 1, there exist a sequence {alλ : λ ∈ Λ} with

∑

λ∈Λ |alλ|
2 <∞ such

that

1

pN
ψl(

x

pN
) =

∑

λ∈Λ

alλϕ(x⊖ λ). (1.4)
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Taking the Walsh-Fourier transform, we get

ψ̂l(pNξ) = ml(ξ)ϕ̂(ξ), (1.5)

where

ml(ξ) =
∑

λ∈Λ

alλχ(λ, ξ). (1.6)

The functions ml, 0 ≤ l ≤ pN − 1, are in L2(R+). In view of the specific
form of Λ, we observe that, Λ = pZ ∪ (r/N + pZ), and so

ml(ξ) = m1
l (ξ) + χ(r/N, ξ)m2

l (ξ), 0 ≤ l ≤ pN − 1, (1.7)

where m1
l and m2

l are in L2(R+).

2. The Main Result

Let {Vj : j ∈ Z} be a nonuniform multiresolution p-analysis with scaling func-
tion ϕ. Then there exists a function m0 such that ϕ̂(ξ) = m0(ξ/pN)ϕ̂(ξ/pN),
where m0(ξ) is as in (1.7).

Applying the splitting lemma to the subspace V1, we get the functions wl,
0 ≤ l ≤ pN − 1, where

ŵl(ξ) = ml(ξ/pN)ϕ̂(ξ/pN), (2.1)

such that {wl(x⊖ λ) : 0 ≤ l ≤ pN − 1, λ ∈ Λ, x ∈ R+} forms an orthonormal
basis for V1. Observes that w0 = ϕ, the scaling function and wl, 0 ≤ l ≤ pN−1,
are the basic p-wavelets.

We now define wn for each integer n ≥ 0. Suppose that for s ≥ 0, ws is
already defined. Then define wq+pNs, 0 ≤ q ≤ pN − 1, by

wq+pNs(x) =
∑

λ∈Λ

(pN)aqλws(pNx− λ). (2.2)

Note that (2.2) define wn for all n ≥ 0. Taking the Walsh-Fourier transform on
both sides of (2.2), we get

(wq+pNs)
∧(ξ) = mq(ξ/pN)ŵp(ξ/pN), 0 ≤ q ≤ pN − 1. (2.3)

The functions {wn : n ≥ 0} will be called the basic nonuniform p-wavelet
packets associated with nonuniform multiresolution p-analysis.
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Theorem 2.1. Let {wn : n ≥ 0} be the basic nonuniform p-wavelet
packets associated with the nonuniform multiresolution p-analysis {Vj}. Then

{wn(x⊖ λ) : n ≥ 0, λ ∈ Λ, x ∈ R+}

is an orthonormal basis of L2(R+).

Proof. First we prove that {wn(x ⊖ λ) : (pN)j ≤ n ≤ (pN)j+1 − 1, λ ∈
Λ, x ∈ R+} is an orthonormal basis of Wj , j ≥ 0 ( by induction on j ) . Since
{wn : 1 ≤ n ≤ pN − 1} are the basic wavelets, (i) is true for j = 0. Assume
that it holds for j. By (1.2) and the assumption, we have

{(pN)1/2wn((pN)x⊖ λ) : (pN)j ≤ n ≤ (pN)j+1 − 1, λ ∈ Λ, x ∈ R+}

is an orthonormal basis of Wj+1. Denote

En = span{(pN)1/2wn((pN)x⊖ λ) : λ ∈ Λ, x ∈ R+},

so that

Wj+1 =

(pN)j+1−1
⊕

n=(pN)j

En.

Now we get functions g
(n)
l , 0 ≤ l ≤ pN − 1, defined by

(g
(n)
l )∧(ξ) = ml(ξ/pN)ŵp(ξ/pN), 0 ≤ l ≤ pN − 1,

such that {g
(n)
l (x ⊖ λ) : 0 ≤ l ≤ pN − 1, λ ∈ Λ, x ∈ R+} is an orthonormal

basis of En, and we have the expansion as in the follows

(g
(n)
l )∧(ξ) = ml(ξ/pN)mµ1

(ξ/(pN)2) · · ·mµj
(ξ/(pN)j+1)ϕ̂(ξ/(pN)j+1).

But, the expression on the right-hand side is precisely wm(i), where

m = l + (pN)µ1 + (pN)2µ2 + · · ·+ (pN)jµj = l + pNn.

Hence, we get g
(n)
l = wl+pNn. Since

{l + pNn : 0 ≤ l ≤ pN − 1, (pN)j ≤ n ≤ (pN)j+1 − 1}

= {n : (pN)j+1 ≤ n ≤ (pN)j+2 − 1}.

Thus we have proved theorem for j+1 and the induction is complete. Now
because Vj = V0⊕W0⊕· · ·⊕Wj−1 we have {wn(x⊖λ) : 0 ≤ n ≤ (pN)j−1, λ ∈
Λ, x ∈ R+} is an orthonormal basis of Vj , j ≥ 0 and from the decomposition
(1.3) the proof is complete.



300 J. Cheshmavar

References

[1] Yu.A. Farkov, Orthogonal p-wavelets R
+, In: Proc. Int. Conf. Wavelets

and Splines, St. Petersburg Univ. Press (2005), 4-26.

[2] J.P. Gabardo, M.Z. Nashed, Nonuniform multiresolution analysis and spec-
tral pairs, J. Funct. Anal. 158 (1998), 209-241.

[3] F. Schipp, W.R. Wade, and P. Simon, Walsh Series, An Introduction to

Dyadic Harmonic Analysis, Adam Hilger, Bristol and New York (1990).


