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Abstract: A mathematical model describing supply chain on a network is
introduced. Due to inventories and various properties of the suppliers, it is not
realistic to choose the velocity in supply chain to be constant in every problem.
So the constitutive relationships for supply chain velocity are presented and
combined with the non-smooth flux function of supply chain. Various examples
relevant to real applications are presented through the characteristics approach
and verified numerically. Numerical experiments are performed in a supply
chain with three nodes. WIP in each node, flux and density of supply chain are
analyzed.
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1. Introduction

In recent years, production flows in a supply chain network have become an
important research prospect. A supply chain network can be considered as
an organization of activities, that consists of suppliers, manufacturers, ware-
houses and customers. Here we will consider the material flow from suppliers
to customers through various internal steps.
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The main problem in supply chain is to design the model and evaluate the
performance of supply chains. Product variety, inventory decision, frequent
introduction of new products, changes in customer demand, minimum cost,
high quality etc. make the problem even more challenging and complicated.

Several mathematical approaches have been proposed for supply chain mod-
eling. There are discrete event simulation (DES) models, based on considera-
tions of individual parts in supply chain [1]. It is very powerful and common
approach for the mathematical modeling in supply chain. DES provides an
accurate description of supply chain dynamics. Here the idea is to track goods
from supplier to customer. In mathematical sense, track means computing
arrival times of each parts over the whole network.

On the other direction, continuous models using partial differential equa-
tions have been introduced and investigated during recent years (see [1], [4]-[10],
[12], [14]). These models describe the evolution of flows, in particular flow of
parts in a single supplier of a supply chain network. Inclusion of non-linearities
in the dynamics provides great advantage of continuous model approach. An-
other main advantage for this models is that they are scale-invariant in the
number of parts.

We consider a chain of M suppliers. Every supplier m receives a certain
good (measured in units of parts) from supplier m — 1, processes the material
and passes to the next supplier m + 1. Supplier m is characterized by its
throughput time 7'(m) and its maximal capacity p(m). To compute the time
evolution of each part in the supply chain, the modeling of the queues are
essential. By assuming FIFO policy, the state of the queue will be either empty
or non-empty. Whenever the queue is non-empty, the part has to wait and the
waiting time is inverse of the processing rate. If 7(m,n) denotes the arrival
time of part n to supplier m, then it leads to the following [1]:

1

7(m +1,n) = max{7(m,n) + T(m),7(m +1,n — 1) + p(m,n —1)

(1)
The above time recursion is analyzed using the Newell-curves (N-curves) as
following [15]:

U(m,t) = iH(t —7(m,n))=1,...M, t>0. (1.2)
n=0

The above discrete model provides necessary information to proceed in the di-
rection of continuous modeling. Mapping each supplier onto one gridpoint in
space, performing the asymptotic analysis (taking M — oco) and using the con-
cept of virtual processors (decomposed each supplier into many virtual suppliers
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to validate in finite number of suppliers case) the time-recursion (1.1) can be
approximated through the conservation law :

dp  9(f(p))
E—i_ ox

f(p) :== min{p, vp}, (1.4)

where p(z,t) and f(p) denote the parts density and flux of parts respectively.
v(= %) can be function of space and time. p can be function of x and t. The
above hyperbolic equation is non-linear due to the ‘min’ function in the flux.

It is very wise to choose initial values of densities are zero throughout the
supply chain. In many real life situations, it is quite frequently seen that some
materials wait initially inside the supply chain. They wait until the proper
amount of other materials come. Then the processor starts the process. There-
fore, it is very significant to study the situation of the suppliers after the pro-
cessing starts in supply chain. We analyze this fact through the characteristics
approach after time ¢ > 0.

In this paper, we restrict our interest to deterministic PDE modeling of
supply chain and its efficient solutions. However, the PDE models allow us
to focus on simulations driven by time-dependent influx A(#). The aim of this
paper is to introduce different types of velocities in supply chain with non-
smooth flux and it’s rigorous analysis.

The paper is organized as follows. In Section 2, we formulate the continuum
modeling equation for supply chain networks. First we consider a single node in
a supply chain network and establish the model by considering various consti-
tutive equations of velocity. We then extend this formulation to a serial supply
chain network. In Section 3, we analyze the solution procedure of the model
through the characteristics approach. Section 4 is devoted to numerical results
and discussion. We discuss about the applicability of the model in Section 5.

=0, Vzel01], t>0, (1.3)

2. A Model for Supply Chain

Let us consider a single node (supplier) in the supply chain. Each supplier
consists of a processor and a queue in front of it. If queue is empty, the material
will directly go to the processor; else the material has to wait. In this aspect,
we focus on continuum modeling now onwards in this paper. Since we mapped
each supplier onto one grid point in space, it is reasonable to choose x as
a continuous variable representing the completion of the product within the
supplier. Parts at x = 0 represents raw material entered into the supplier and
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parts at = 1 are the finished products going out of the supplier. Let p(z,t) be
the density of parts at stage x and time . We denote ;1 as maximal processing
rate and v(x,t) represents the velocity of the product moving in the supplier.
Let y;(z,t) denotes the yield-loss in the supply chain at stage x and time ¢,
which can be considered as a function of parts density: y; = y;(p). If A(¢) is
the arrival rate in the supply chain, then the following model can be obtained
from the conservation of parts within the supplier:

%Jr@%-yz(/))—o, Vaxel01], t>0, (2.1)
F(p) = min{pu(, ), v(a, ) pla, 1)} (2.2)

Initial condition:
p(,0) = pola) (2.3)

Influx condition :
£(0,t) = A(¢). (2.4)

In the above model P appears as processing time for a part when it enter
into the processor. Now the question arises: what will be the form of velocity in
the supply chain v(x,t)? Before answering this question, we want to introduce
the term ‘Work in Progress’, denoted by WIP(t). From [1] we know the relation
of WIP and density as following:

1
WIP(t) = /0 oz, t)da.

Let us assume that v is the function of part density. v = v(p) is the equation
relating the speed of the product moving through the supplier to the amount
of product in the supplier, i.e. WIP. Therefore we have the form of velocity
and that is v = v(WIP(t)). Sun et al. (2008) have described different forms of

velocity. In this paper we will discuss the following forms of velocity:

1
P+ Pp(1,t)’
= P PWIPH)

v(p)

Each velocity form combined with equations (2.1)-(2.4) represents the dy-
namics of the supplier.
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2.1. Towards Network Modeling

In this section, we want to extend our model of single node to a serial supply
chain. First we define the network in supply chain [9]. A supply chain network
is a finite, connected, directed, simple graph consisting of arcs A = 1,2,...;n
and vertices V= 1,2,...,n — 1. Each supplier is modeled by an arc j. Each arc
again parameterized by an interval [a;, b;].

e

N
N '3
3
®

W

m-1

Figure 1: Serial Supply Chain

Let us consider a chain of M suppliers. Every supplier m received parts
from supplier m — 1 then it get processed and pass it to the next supplier m+1.
We assume that the materials flow from node m — 1 to m, and then m to m+1
and so on. Finally the product exit from supply chain at node M. Let p;(x,t),
7 =1,2,..., M denote the density of parts at node j, at stage x and at time t.

If y;(p;) yield loss at supplier j, then conservation of materials can be pre-
sented as follows:

dp; , 4,(0))

—— i) = t 1 =1,2,.... M
6t 8$ "‘?/l(ﬂg) 07 >07 T e (07 ]7 J ) 4y ) )

fi(p) := min{p;(t), v;p}.
The velocity v; of the product movement through the node j is a function of
Pj-
vj = v;(p), ji=1,2,.., M.
We impose the following initial conditions for the local densities as following:
pj(x,0) = pjo(x), J=12,.., M.

Here we need to be careful regarding the influx condition. The first node need
to be treated separately. We impose an influx which is eventually influx of
supply chain, for the first node:

f1(0,t) = A (¢).
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In supply chain, we often need to provide some extra materials from out-
side or some unusable materials from the supplier need to be removed (quite
frequently occur in fruits, vegetables supply network). So to improve the model
as more efficient, we introduce the term A;. In the above model A; represents
the extra or removed materials in node j of the supply chain. If we consider the
equation of queue in the supplier in separate way, then the queue equation will
be of following form. Each queue is a time dependent function ¢ — ¢;(t) and
used to buffer demands for the processor j. The inter-connection between the
nodes give the following influx conditions for the remaining supplier j. Here two
cases have to be considered as either queue is empty or the queue is non-empty.
The following equation take care of both the circumstances.

dg;
dt

where f;(0,%) is defined as follows:
For j =2.3,... M

~f min{\;(¢) + fj—1(1,t), 1(t)} if () =0
1(0,t) —{ 15 (t) ! = & if Zj(t) £0.

= \j(t) + fi—1(1,1) — £;(0,%),  ¢;(0) = gjo,

1
In this case, we have v; = v(W;(t)), where W;(t) = / pi(z,t)dz.
0

By introducing the connectivity matrix, we can model the supply chain
having multiple of nodes like a network. The idea of connectivity matrix has
been introduced by Sun [16]. Here the same way we can extend the model of a
serial supply chain to the network model of complex geometries.

3. Solution Procedure

Here we use the idea of constructing solution p(z,t) for all times t is given
by front-tracking algorithm ([3],[11]). We basically start with a step function
po(z) and solve at each point of a jump discontinuity a Riemann problem. The
evaluated solution p(x,t), t > 0 is again a step function with discontinuities
traveling at constant speed. Since the flux function of our problem is continuous
and piecewise linear, all discontinuities of the solution will be referred as fronts.
There is possibility that after some time one or more fronts may collide. Then
we proceed solving Riemann problem with initial data at collision time. If we
are able to show that the number of collisions is finite then for all times ¢, this
procedure is well-defined and generates a solution p(x,t).
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We want to show that the number of interactions between the discontinuities
are finite. Let F'(t) be the total number of fronts in the front tracking solution
p(x,t) at time ¢ and L(t) be the total number of linear segments present in all
fronts p(z,t) at times t. The number of linear segments in the piecewise linear
flux denoted by S. We define I(t) = SL(t) + F(t). We will show that I(t)
is strictly decreasing for every shock collision. Since flux function have S — 1
breakpoints, after one collision F'(t) can be increasing atmost by S — 1. But at
the same time L(t) decreases by 1. Now S(L—1)+ F+S—-1=SL+F—-1<
I(t). Therefore, the number of collisions will be finite. Furthermore, by the
construction of the solution, total variation is non-decreasing and bounded. We
will illustrate some of the situations occurred in the characteristics analysis.

In Example 1, we discuss the situation when initial values of density have
a single discontinuity. We analyze the nature after small time considering the
initial values of the density having multiple discontinuities in Example 2. As
we mentioned earlier, these types of examples occurred frequently since some
of the materials initially stored in the suppliers. It starts processing after the
materials come from the previous supplier. So, the following problems are quite
relevant in supply chain point of view.

Example 1. Let us consider equation (2.1) with 100 percent yield. We
have the constant (or piecewise constant) influx. We consider the initial con-
dition: po(z) = % for z < 3 and po(z) = 1 for z > 3. Let Df(p) represents
weak derivative of flux f(p). Let us take p = 1 and v = 2. Now we have the
following: Df(p) =2 for 0 <z < % and Df(p) = 0 for 3 <z < 1. Let s be
the speed of the discontinuity. Using the Rankine-Hugoniot condition, we get
5§ = % The solution of the discussed problem is following:

A

for x <t
fort<a<3t+3
forx>%t+%.

p(z,t) =

N

Since there is no more collision, the above solution holds for all time ¢ > 0.

Example 2. Here we introduce the problem which brings an interesting
situation as breakpoint in flux and shock waves (creating due to the different
characteristics velocities) will interact. Let us consider the following initial data
for density: po(z) = 2 for x < %, po(z) = § for 3 <2 < 2 and py(z) = 1 for
x > % with conservation law (2.1) (assume 100 percent yield). We consider
wu and v are same as previous example. Weak derivative of the flux D f(p) is

given by: Df(p) =0for 0 <z < %, Df(p) =2 for £ <z < 2 and Df(p) =0
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for % < o < 1. We can observe that f(p) has a breakpoint at p = % Here

we need to consider two Riemann problems with initial values (p, p,) = (2, %)
and (pg, pr) = (%, %) Let s1, s and s3 be the speed of the discontinuities
respectively, then s; = 0,52 = 2 and s3 = % After sufficiently small time ¢ > 0,

we get the following solution:

2 for0 <z < %
1 for L <ax<Liion
t) = 2 — 3
p(z1) % f0r§—|—2t<x§§+%t
2 2
1 for x > 5+ 5t
The discontinuities at x = % and x = % will collide after time ¢ = i and

create shock wave. So the above solution is no longer valid. The speed of the
discontinuity will be s4 = 0. After time t = %, the solution will be

for0<z <
for <2<

for§<x§1.

ool

p(z,t) =

— o= DN

Since there are no more collision, the above solution will be valid for all time
t > 0. This solution will be verified numerically in the later section.

The above analysis can be carried out for different values of velocity form
and for non-constant p(z,t). The situation will be same and can be verified by
the procedure discussed above. The solution can be constructed through either
shock or discontinuities. Now we proceed to the numerical direction to validate
the above solutions and to simulate the supply chain model in the next section.

4. Numerical Simulation

In this section, we focus on the serial supply chain. The case of supply chain
network is similar to the serial supply chain and can be discussed the same way.
We want to verify the Lipschitz continuity of our flux function. If v(z,t) is con-
stant, then it is easy to verify that f(p) is Lipschitz continuous. If v(x,t) is not
constant, then also from our choice of velocity we can ensure that ||v|ec < K,
for some constant K. Since the flux function is Lipschitz, then any monotone,
conservative and consistent scheme converges to unique entropy solution (for
more, one can refer [13]).
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Numerically, we discretize the nonlinear hyperbolic equation using an Up-
wind scheme [4]. We use trapezoidal rule to find the work in progress. For each
supplier j, we use the following notation:

e L; = length of the supplier j

o Az, = f]—é, N; = number of segments in discretization of supplier j

o At; = %j, M; = number of segments in descretization of time [0, 7]
e \(j) = influx at ¢;

e p(j,n) = approximate density of supplier j at point (z;,t,)

e v(j,n) = approximate velocity at the point (xj,t,).

The upwind method reads as

p(Gn +1) = pljim) — ﬁ—gmj T 1n) — £, ),

where

Fln) = A(n) for first supplier
B = min{v(j — 1,n)p(j — 1,n),u(j —1,n)} else

with the CFL condition given by

At

We first validate the solution of Problem-2 with the characteristics solution
in this section. The step length in space and time length are considered in such a
way that CFL condition will be satisfied. In Fig.2, we present the scenario after
some short time starting with initial condition given in Problem-2. Clearly, the
characteristics solution and numerical solution are the same.

In this section we conduct two numerical experiments with different form
of velocity in the supply chain. We consider a supply chain with three nodes.
We consider the length of X (the degree of completion interval) equal to unity.
The nodes will represent the intervals [0,0.2], [0.2,0.8] and [0.8,1]. The maximal
processing rate p is given as follows, see [1]:

15 for 0 <x<0.2
pu(x,t) =4 10 for 0.2 <2 <0.8
15 for 0.8 <z <1.
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Figure 2: Solution with discontinuous initial data

0 50 100 150 200
time

Figure 3: Influx in supply chain. It imposed on the left of the prob-
lem domain.

The given influx is displayed in Fig.3. First, we consider the following form
of velocity:

1
)= B

Take the step length in space Az = 0.05 and time length At = 0.01. Processing
b
rate is taken as 0.15. WIP can be computed as / p(x,t)dzx for each node. The
a
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Figure 4: Work in progress
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Figure 5: Density p and flux f in supply chain

work in progress (WIP) of each nodes are shown in Fig.4. The density and
flux supply chain are presented in Fig.5. WIP is the critical information in
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Figure 6: Work in progress
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Figure 7: Density and flux in supply chain

supply chain management, in particular for inventory control and utilization
management at each node. Accumulation of WIP and its effect to the flow
are quite evident as displayed in the plots of WIP. As expected, bottlenecks
occurred at z = 0 and z = 0.2.

Now we consider the following form of velocity:

1

o) = FEwIRG)

Here the maximal processing rate and nodes in supply chain are considered same
as above. The processing rate is taken as 0.2. We discretize the conservation
law using Upwind scheme and evaluating WIP using trapezoidal rule. The work
in progress for each node is shown in Fig.6. The flux and density in supply chain
are presented in Fig.7.

5. Applications

In this section, we will clearly specify the applicability of the presented model
and the corresponding numerical simulation in the supply chain network. The
model enriches the study of PDE based supply chain modeling in many ways.

e It is seen in many real supply chain problems like vegetables, processing
food items or electronics commodities, we can not start from an empty
supply chain. There are some initial materials should be available to
some particular suppliers. One can easily realize that the provided initial
materials may not come continuously as expected. The presented model
analyze the situation and provided the corresponding density distribution
in the supply chain.
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e It is not appropriate to choose the speed of the materials as constant.
It basically depends on the density in the supply chain. Whenever the
density increases, velocity should decrease. The forms of the velocity
considered in this paper definitely reflect that. So, it is quite evident that
the presented model is much more suggestible than the existing models
as far as application is concern.

e The presented model for network have the flexibility that some materials
can be entered into the chain from outside before the processor. This is an
important aspect for various supply chain network. After the processing
starts, there may be need for some materials in supplier m at time ¢t = tg
which to be provided from outside. The situation is incorporated by
introducing a time dependent term in the flux function.

e The presented numerical simulation will help to analyze the overview of
a serial supply chain. The occurrence of bottlenecks, outflux are some of
the aspects.

6. Conclusion

In a real life supply chain, the velocity may not be constant throughout. So,
we present a continuous model with non-smooth flux attached with the various
form of velocities. Afterwards, based on the proposed models, some numerical
examples have been presented. The proposed model can be used to obtain more
accurate results for material flows in supply chain networks from macroscopic
perspective. In various scenario our models can be applicable.

We would like to concentrate on priority based models which are more
relevant with real situation. Also the yield-loss in supply chain prospective
is on process. Moreover, optimization perspective like maximum outflux and
minimum costs are also be desired for the proposed models. We can expect
some important features like re-entrant nodes and risk analysis of supply chain
networks to be introduced by the proposed continuum modeling method.
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