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Abstract: The present article explores a queuing system with multiple inputs,
single server, different service rates, and limited size of the buffer. The system
parameters are crucial for the performance of numerous applications. We de-
velop an analytical model of such a system and obtain the following results:
steady-state probabilities of the system and system throughput.
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1. Introduction

The main topic of this article is the study of behaviour in equilibrium of queue
with Poisson arrivals and single server. Such queues have a wide range of ap-
plications, see for example [1], [2], [5], [9], [10], [12]. Adopting the queuing
theory to estimate the network traffic becomes an important way of network
performance prediction, analysis and estimation. In [10] two queuing models
(M/M/1/k and M/M/2/k in Kendal notations) have been applied to determine
the forecast way for stable congestion rate (blocking probability) of the network
traffic. The processes of data coding, decoding, and sending to the higher layer
are covered by a single server. In [2] a queuing network model is constructed
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to study the dynamics of installing a Proxy Cache Server (PCS), that deals
with a more realistic case of the presence of external visits to the remote Web
servers with limited buffers. The underlying structure is a mixed queuing net-
work with exponential arrival streams and exponential servers. Web server with
processor sharing discipline is considered in [5]. The arrival process of HTTP
requests is assumed to be Poissonian and the number of requests that can be
served is limited. Such a system can be viewed as a network with one node.
The average of the service time requirement and the limit of the number of
requests being served are model parameters. The parameters are estimated by
maximizing the log-likelihood function of the measured average response time.
The exponential growth of in the Web traffic has led to unacceptable response
times and unavailability of services, thereby driving away the customers, see
[12]. Many companies are trying to address this problem using multiple Web
servers with a front-end load balancer. Centralized and distributed load balanc-
ing models are developed for three routing policies. The average response time
and the rejection rate for centralized model are derived first, then analysis is
extended to the distributed load balancing that minimizes the average response
time. Three node queuing network is chosen to describe the operation of an
asynchronous Web server event handler, demultiplexer, and completion handler
[9]. The demultiplexing node receives requests from two input streams, namely,
read requests and write requests. The following performance metrics for each
request type are determined: expected throughput, expected busy handlers,
expected queue length, and expected probability of request loss. Examples of
queues with single server can be found in air defence systems, see [1]. Each
air defence center contains many operational consoles. Over a period of time
the operator is presented with a sequence of situations that he is required to
examine for problems, and that he must resolve by taking the appropriate ac-
tion. The basic functions carried on at these positions are air surveillance,
identification, and weapons directions.

Both simulation and analytical methods are used to describe the behaviour
of queues and to derive the performance metrics. In [9] simulation model of
the network is presented employing CSIM language. The analytical models rely
mostly on Markov chains. The process can be imbedded at the points of depar-
ture or arrival, [4]. An M/M/1/k system is examined using this approach and
equations of steady state probabilities are set up. A different approach is taken
in [8]: A two-moments approximation schema is developed for the probability
distribution of M/G/1/k system and extended to the analysis of M/G/1/k net-
works. The system studied in [1] has multiple exponential arrivals, and different
exponentially distributed service times. An infinite buffer is assumed and the
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performance characteristics are derived from Markov process equations.
In this paper we drop the assumption of infinite buffer due to the sim-

ple fact that it does not exist in real-life situations. Finite buffer causes the
system throughput to decrease because some requests are rejected and lost.
The probability of loss or rejection is often called blocking probability and it
is important performance measure. We consider multiple exponential arrivals
and independent generally distributed service times and derive the steady-state
probabilities.

2. Definition of the Model and Description

Our mathematical model is as follows: m distinct types of requests arrive ran-
domly and independently at the server where all are processed with service
times that are random and independent. The service discipline is: First Come
First Served (FCFS). Inter-arrival times for a request of type j (j = 1, ...,m)
are exponentially distributed with parameter λj . The service times follow gen-
eral distribution. The system can be in one of the following states: 1) S0

0 -no
request in queue and none in service, 2) S

j
n − n requests in queue and type j

in service, 3) S
j
k − k requests in queue and type j in service and the buffer is

full. In the latter state S
j
k the system cannot accept more jobs and all arriving

requests are rejected, i.e. the system is blocked for new arrivals. Acceptance of
new requests resumes after completion of the job in the server.

Under the assumption of generally distributed repair time the process is
not Markovian, so that a supplementary variable x, elapsed time in service, is
added to obtain suitable equations, see [3].

Throughout this paper we use the following notations:

P
j
n(x) = P [in the equilibrium state n requests in queue, type j in service

and the elapsed service time lies between x and x+dx] (n = 1, ..., k; j = 1, ...,m);
P 0
0 = P [no requests in queue and none in service], steady-state probability;

P
j
n =

∫

∞

0 P
j
n(x)dx steady-state probability;

Pn =
m
∑

j=1
P

j
n = P [n requests in queue], steady-state probability;

Pk = Pb blocking probability;
Fj(x) c.d.f. of the service time of type j;
fj(x) p.d.f. of the service time of type j;

hj (x) =
fj(x)

1−Fj(x)
service rate for type j;

λ =
m
∑

i=1
λi;



236 A.V. Nikolov

δm,n the Kronecker delta’s Laplace operator;
ḡ(s) Laplace transform of g(x);
g(n)(x) the nth derivative of g(x); g(0) (x) = g(x).

3. Analysis of the Model

Having in view the nature of the system, we obtain the following set of integro-
differential equations:

P 0
0 λ =

∑m

j=1

∫

∞

0
P

j
0 (x)hj (x) dx (1)

[

d

dx
+ λ+ hj (x)

]

P
j
0 (x) = 0 (2)

[

d

dx
+ λ+ hj (x)

]

P j
n (x) = P

j
n−1 (x)λ (3)

for n = 1, ..., k − 1; j = 1, ...,m,
[

d

dx
+ hj (x)

]

P
j
k (x) = P

j
k−1 (x) λ. (4)

We have the following boundary and initial conditions:

P
j
0 (0) = P 0

0 λj +
λj

λ

∑m

j=1

∫

∞

0
P

j
1 (x)hj (x) dx (5)

P j
n (0) = (1− δn,k))

λj

λ

∑m

j=1

∫

∞

0
P

j
n+1 (x)hj (x) dx (6)

for n = 1, ..., k; j = 1, ...,m,

P 0
0 +

∑k

n=0

∑m

j=1
P j
n = 0. (7)

The multiplicand
λj

λ
in (5), (6) is the probability that type j demands initiation

of service or type j is next in line, see [1].

We divide (2)-(4) by 1− Fj(x) and denote u
j
n(x) =

P
j
n(x)

1−Fj(x)
for n = 0, ..., k

and j = 1, ...,m. Then taking into account that fj (x) = (1−Fj (x)
(1), we have

from (2)-(4) after some manipulations,
[

d

dx
+ λ

]

u
j
0 (x) = 0 (8)
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[

d

dx
+ λ

]

ujn (x) = u
j
n−1 (x)λ (9)

for n = 1, ..., k − 1; j = 1, ...,m,

d

dx
P

j
k (x) = u

j
k−1 (x)λ. (10)

By using the Laplace transform, the above equations are transformed as follows:

[s+ λ]uj0 (s) = 0, (11)

[s+ λ]ujn (s) = u
j
n−1 (s)λ (12)

for n = 1, ..., k − 1; j = 1, ...,m,

su
j
k (s) = u

j
k−1 (s) λ. (13)

From (11) we get

u
j
0 (s) =

u
j
0 (0)

s+ λ
. (14)

We use induction on n to prove the following relationship

ujn (s) =
n
∑

i=0

λn−iP
j
i (0)

(s+ λ)n−i+1
. (15)

Proof. After substitution of (15) into (14) for ujn+1 (s) and some simplifica-
tions, we have

u
j
n+1 (s) =

n+1
∑

i=0

λn−i+1 P
j
i (0)

(s+ λ)n−i+2
,

and this completes the proof.
For ujk (s) we determine from (13) and (15)

u
j
k (s) =

k−1
∑

i=0

λk−1−iP
j
i (0)

(s+λ)k−i

s
. (16)

The inverse Laplace transform of (14) and (15) yields

u
j
0 (x) = P

j
0 (0) e

−λx, (17)

ujn (x) =
n
∑

i=0

λn−ixn−iP
j
i (0) e

−λx

(n− i)!
(18)
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and

u
j
k (x) =

∫ k−1
∑

i=0

λk−1−ixk−1−iP
j
i (0) e

−λx

(k − 1− i)!
dx. (19)

In order to compute the integrals in (19) we derive the following formula:

∫

xne−λxdx =
e−λx

λn+1

n
∑

i=0

λixin!

i!
. (20)

The proof of this is done by repeatedly applying the expression

∫

xle−λxdx =
xle−λx

−λ
+

l

λ

∫

xl−1e−λxdx
e−x

λl+1
to

∫

xne−λxdx.

After substitution of (20) into (19) we express ujk (x):

u
j
k (x) =

k−1
∑

i=0

e−λxP
j
i (0)

λ

k−1−i
∑

l=0

λlxl

l!
. (21)

Then, the steady-state probabilities in terms of the system parameters are:

P 0
0 =

m
∑

j=1
P

j
0 (0) f̄j(λ)

λ
, (22)

P
j
0 =

P
j
0 (0) [1− f̄j (λ)]

λ
, (23)

P j
n =

n
∑

i=0

P
j
i (0) [

1

λ
−

(−1)n−i
λn−iF̄

(n−i)
j (λ)

(n− i)!
] , (24)

P
j
k =

k−1
∑

i=0

P
j
i (0)

λ

k−1−i
∑

l=0

[
1

λ
−

(−1)l λlF̄
(l)
j (λ)

l!
] . (25)

Software tools like Mathematica [11] can be used to compute the derivatives in
(21)-(25). To determine the coefficients ujn (0) we obtain from (5) and (17):

P
j
0 (0) = P 0

0 λj +
λj

λ

m
∑

j=1

[−λP
j
0 f̄

(1)
j (λ) + P

j
1 (0) f̄j(λ)] . (26)
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And from (6) and (18),

P j
n (0) =

λj

λ

m
∑

j=1

n
∑

i=0

P
j
i (0)

(−1)n−i
λn−if̄

(n−i)
j (λ)

(n− i)!
. (27)

The equations (7), (22), (26) and (27) form a set of simultaneous equations
from which the unknowns P

j
n (0) can be computed. Since modern computers

have a capability to solve tens of thousands and even hundreds of thousands
of linear equations, producing solutions of these equations is not a challenging
task, see e.g. [6], [7].

The throughput H is diminishing due to the rejection of requests:

H = λ(1− Pb) . (28)

4. Concluding Remarks

This paper presents an analysis of a single-server limited in size queuing sys-
tem for m different types of customers having independent Poisson arrivals and
generally distributed service times. The approach eliminates some constraints
of the known related analyses. We obtain the steady-state probabilities thus
creating opportunities for computation of the system output parameters. Al-
though we start with fairly sophisticated set of integro-differential equations,
the output of the model is a set of linear equations from which the steady-state
probabilities can be determined. The ease of obtaining performance measures
in a meaningless time and without much computational effort makes very fea-
sible the incorporation of the model as a design tool for Web servers, networks,
etc.
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