International Journal of Applied Mathematics

Volume 26 No. 2 2013, 203-220

ISSN: 1311-1728 (printed version); ISSN: 1314-8060 (on-line version)
doi: http://dx.doi.org/10.12732/ijam.v26i2.7

A NUMERICAL METHOD TO COMPUTE THE VOLATILITY
OF THE FRACTIONAL BROWNIAN MOTION IMPLIED
BY AMERICAN OPTIONS

Luca Vincenzo Ballestra! §, Liliana Cecere?

L2Dipartimento di Economia
Seconda Universita di Napoli
Corso Gran Priorato di Malta, 81043, Capua, ITALY

Abstract: We develop a highly efficient approach to compute the volatility
of the Fractional Brownian Motion (FBM) implied by American options. To
this aim, the theoretical values of American option prices under the FBM are
calculated using a finite difference scheme enhanced by a space-time Richardson
extrapolation procedure. Such an approach, which is coupled with a suitable
optimization algorithm, turns out to be very accurate and fast. The practical
performances of the method proposed are demonstrated by applying it to the
time-series of several stocks belonging to the Italian FTSE-AIll Share.
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1. Introduction

The Fractional Brownian Motion (FBM), originally introduced by Mandelbrot
and Van Ness, is an improvement of the well-known Geometric Brownian Mo-
tion (GBM), on which the famous Black-Scholes option pricing model stands
[12]. In particular, the GBM has the drawback of not considering the past his-
tory of stock returns, that is the yield of a security at any given time is totally
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uncorrelated with the returns at the previous times. By contrast, the FBM
allows one to model the dependence of a stochastic process on its past history
(long-range dependence) and thus it is generally considered more accurate than
the GBM in describing asset prices, which normally exhibit a high degree of
autocorrelation (see for example [11, 22, 30, 32, 40, 53, 57]).

In this paper we propose an efficient method to estimate the volatility of the
FBM implied by American option prices. Note that it is particularly important
to take into account American options (rather than European options), as the
majority of the options traded on the markets are of this type.

Computing the volatility of the FBM implied by American options is a
challenging problem. In fact, American option prices under the FBM are not
available in closed form; so, one has to employ an approximate solution, but
such an approximate solution must be very accurate and fast, because, in order
to obtain a reliable estimation of the implied volatility (for example by least
squares fitting), American option prices need to be calculated several times and
with enough precision.

To the best of our knowledge, the problem of estimating the volatility of
the FBM implied by American option prices has been addressed only in [28]. In
particular, in that work, the theoretical values of the option prices are computed
using two different approximate solutions, namely the well-known formula by [7]
and the formula proposed by [36]. Now, the paper [28] is certainly interesting,
as it is (again to the best of our knowledge) the only published work dealing
with the estimation of the volatility of the FBM implied by American options.
Nevertheless, the estimation approach proposed therein is not particularly ac-
curate. In fact, first of all, the volatilities obtained using the two formulae (that
by [7] and that by [36]) are sometimes significantly different one from the other
(the relative difference can also be the ten percent, see [28]), which makes it
difficult to tell whether and which of the two formulae provides a sharp esti-
mation of the implied volatility. Second, [28] make a rough approximation, as
the early exercise premium typical of American options is calculated using the
standard formulae of Black and Scholes, which are valid for the GBM but not
for the FBM.

In the present paper, an efficient estimation of the volatility of the FBM
implied by American options is obtained by employing an ad-hoc numerical
discretization /optimization procedure. Precisely, first of all a fast and accurate
approximation of American option prices under the FBM is computed by means
of a finite difference scheme enhanced by a space/time Richardson extrapolation
technique. Then, the problem of minimizing the distance between theoretical
and empirical option prices is solved using the Brent’s algorithm (see [14]). This
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latter approach turns out to be very appropriate as it does not require the use
of derivatives, which would not be available since the American option prices
are computed by finite difference approximation.

In summary, the method proposed greatly reduces the complexity of the
problem, so that the volatility of the FBM implied by American options can
be calculated very accurately and quickly. In fact, as shown by the numerical
experiments reported in Section 4, on a normal personal computer the volatility
is obtained with at least three correct decimal digits in only a couple of seconds.

We point out that the main purpose of this paper is to develop a highly
efficient approach to estimate the volatility implied by American option prices
under the FBM. However, as a sub-product of this work, we also develop a
numerical method to compute American option prices under the FBM (and
thus under the GBM as well) which reveals to be very accurate and fast. This
method could also be employed for valuing American options on underlying
asset prices described by models other than the FBM, such as, for example, the
CEV model [18], or models with jumps [45].

The paper is organized as follows: in Section 2 the basic facts of the FBM
are recalled; in particular, our attention is focused onto the partial differential
problem that allows us to compute the price of American options; in Section
3 the method to estimate the implied volatility is developed; in Section 4 the
numerical results are presented and a numerical comparison between the FBM
and the GBM is provided; finally, in Section 5 some conclusions are drawn.

2. Fractional Brownian Motion

The FBM is a Gaussian process with zero mean and mutually independent
stationary increments. In particular, the structure of increments is modeled by
a fractional Wiener process [21, 43, 52

Bu(t) = Bu(0) + ﬁ [/(; (= )73~ (=) ) aw (s)

+ /Ot(t - s)H%dW(s)] (1)

where W is a standard Wiener process [58] and I is the Gamma function [1].
In (1) H is the so-called Hurst exponent, which takes values in (0, 1).

The FBM is often used to describe the prices of stocks traded in the financial
markets (see for example [11, 30, 32, 40, 57]). In particular, it is assumed that,
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under the dividend adjusted risk-neutral measure (see [58]), the price of a stock
S(t) satisfies the stochastic differential equation:

dS(t) = (r — q)S(t)dt + o S(t) o dBy (t), (2)

where r is the interest rate, and ¢ and o are the (continuous) dividend yield
and the volatility of the stock respectively. In (2) the symbol ¢ denotes the
so-called Wick product (see [31]).

The Hurst exponent is a parameter that characterizes the FBM: if H =

oN|

the process (1) degenerates to the standard Wiener process (so that S reduces t

1
the well-known GBM); if H > 3 the increments of the process (1) have positive

1
autocorrelation (so that S has a persistent trend); if H < 3 the increments of

the process (1) have negative autocorrelation (so that S has an anti-persistent
trend).

2.1. American Option Pricing under the FBM

The great majority of the traded options are of American style. This is due to
the fact that American options can be exercised at any time on or before the
expiration date, and thus are considered very appealing by investors.

The price of an American option under the FBM satisfies a partial differ-
ential problem which is described in the following. For the sake of brevity, we
only consider the case of American Call options. Nevertheless, an analogous
partial differential problem can be written for American Put options as well.

Let C(S,t) denote the price at time ¢ of an American Call option on an
underlying price S, with maturity 7" and strike price K. It can be shown (see,
for example, [6]) that C'(S,t) satisfies the following partial differential problem:

aCc(S,t) 1 82C/(S, aC(S,
08D | Lo TC B ps?ED s, )
C(S,T) > ¢(S), (4)
aC(S,t) 1 820(8S, aC(S,
(7((% 2 5H%—QSQ% +(r - q)S% —rC(s, t))

with final condition:

C(S,T) = o(9), (6)
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and boundary conditions:
C(0,t) =0, C(S,t)~S—K as S — +oc. (7)
In (4), (5) and (6) the function ¢ is the so-called option’s payoft:
¢(5) = max[S — K;0]. (8)

Problem (3)-(7) is rather complex from the analytical standpoint. In par-
ticular, no exact closed-form solution is available and numerical approximation
is required.

3. The Estimation Method

The calculation of the implied volatility is done in three steps. First of all, the
Hurst exponent, which is needed in problem (3)-(7), is estimated; second, an
accurate and fast approximation of American option prices under the FBM is
computed; third, the implied volatility is obtained as the value that minimizes
the distance between the theoretical and the empirical American option prices.

3.1. Hurst Exponent

To estimate the Hurst parameter H of the FBB several different approaches
have been proposed. For example, [4, 17, 26, 32, 33, 35, 40, 42, 44, 47, 49, 50, 59]
use the so-called Rescaled Range analysis (R/S), [2, 3, 9, 38] apply wavelet trans-
form techniques, [10, 46, 55, 56] employ maximum likelihood estimation, and
[8, 19, 20, 37] have developed a special procedure called multi-fractal analysis,
according to which the parameter H is related to the moments of the probability
distribution of the increments of (1).

In the present paper we decide to employ the R/S analysis, for mainly
two reasons: first of all, among all the various approaches, the R/S analysis
is the most common one when dealing with time series of asset returns (see
for example, [4, 17, 26, 32, 40, 44, 47, 50]); second, such a technique, besides
being simple to implement and computationally fast, provides a very accurate
and robust estimation of the Hurst exponent. In particular, as the number of
observations increases, the R/S estimator converges almost surely (i.e. with
probability one) to the true value of H (see [39]).

Nevertheless, we make observe that the method used to compute the Hurst
parameter is not the main focus of our paper, as we are primarily concerned
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with estimating the implied volatility of the FBM. Then, methods other than
the R/S analysis, such as some of those mentioned above, could be employed
as well.

Let us briefly recall how the R/S analysis works (for details see [39]). Let
So, 51, ..., 5N, denote the prices of a stock observed at times to,%1,...,tn,, Te-
spectively. Let us define the logarithmic returns:

Si

=1 =1,2,..,N,. 9
xl 2 S,L_l’ 1 = Y T ( )
The R/S statistic is defined as follows:
1 k k
RS =g oy, D=0 g -]
1= 1=
where
1 &
i=1

The estimated value of H, which we denote H*, is obtained as the slope of the
linear regression of In[R/S] on In(N,).

3.2. Numerical Approximation of American Option Prices

As already observed, problem (3)-(7), which yields the prices of American op-
tions under the FBM, requires numerical approximation. In this paper, we
consider a time discretization of it that amounts to computing American op-
tions prices by Richardson extrapolation of the prices of Bermudan options;
let us recall that a Bermudan option is an option that can be exercised only
at a discrete set of dates. The advantages of such an approach have been as-
sessed, for instance, in [5, 6, 15, 16, 25, 29, 41]; in particular, the Richardson
extrapolation is computationally faster than methods based on complementar-
ity formulations, such as the linear complementarity method [13, 34] or the
penalty method [23, 24], which require one to perform a fixed-point iteration
at every time step.

In the interval [0,7] let us consider N, + 1 equally spaced time levels
to,t1, ..., tn, such that tx = kAt,k = 0,1,..., N;, where At = 3= Let Cas(S,1)
denote the price of a Bermudan option with maturity 7" and exercise dates
to,t1,...,tn,. The Bermudan option price Ca¢(S,t) is obtained using the fol-
lowing recursion procedure. First of all set k = N;, and define:

V(S,tk) = ¢(S5). (12)
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Then, for t € [tx_1,t), solve the partial differential problem:

2
780%)&5’ t) + %HQJQS2 97 Cal5:t) Cﬁ‘;(f’ ) + (r—q)SiacAath’ 2 —rCat(S,t) =0, (13)
Car(0,8) =0, Cai(S,t)~S—K as S — 400, (14)
Car(S, k) = W (S, t). (15)
Then set:

(S, tg—1) = max[Cac(S, tg—1), #(9)]. (16)

Finally, update the counter:
k=Fk—1, (17)

and repeat the cycle (13)-(17) until £ = 0.

Problem (13)-(16) corresponds to performing a time discretization of the
possibility of early exercise by imposing the constraint (16) only at the dates
ty,t2,...,tn,. The Bermudan option price Ca; tends to become a fair approx-
imation of the American option price C' as the number of exercise dates N;
increases or, alternatively, as At — 0. In particular, as shown in [29], Cha,
tends to C like O(At) as At — 0.

This convergence rate is not very high and thus is enhanced by Richardson
extrapolation. In particular, in the present work we employ both the linear
Richardson extrapolation:

C(S,t) = 2Con¢(S,t) — Car(S, 1), (18)
and the quadratic Richardson extrapolation:

8Cyat(S,t) — 6Coa1(S,t) + Car(S,t)

3 )
which are second-order accurate and third-order accurate as At — 0, respec-
tively (see [27]).

Finally, it remains to solve the partial differential problem (13)-(15). To
this aim, we approximate the time derivative in (13) through a single step
of the implicit Euler finite difference scheme (whose first-order convergence is
enhanced thanks to the extrapolations (18) and (19)). Precisely, let C,(S) and
WK, (S) denote approximate values of Ca¢(S,tx) and Wa.(S,ty), respectively.
Problem (13)-(15) is discretized in time as follows:

C(8,t) = (19)

V5, (5) - C&,'(5)
At

0*Cx; ' (S)
052

Cx: ' (9)
05—

—rCR7H(S) =0, (20)

1
+ 5 HS?
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cklo)y=0, CENS)~S—K as S — +oc. (21)

Finally, we discretize problem (20)-(21) in the S variable. This is done using a
finite difference approach which, once again, employs the Richardson extrapo-
lation procedure.

First of all, the infinite spatial domain [0, +00) is replaced with a bounded
one [0, Spax], where Spax is chosen large enough so that the truncation error is
negligible (as is customary we set Spax = 2K).

Then let us consider Ng equally spaced points S; = (j—1)h, j = 1,2,..., Ng,

IS o
where AS = %, and let CZLXJS denote an approximate value of Cﬁ;l(Sj),

j=1,2,...,Ng. Equation (20) is discretized in space using the (centered) three-
point finite difference scheme [51]:

ok _ ok k=141 ~k—1j—1
ALAS L 0S; At,AS At,AS
At J AS
k—1,j+1 k—1,j k—1,5—1
Catns —20a x5+ CarRs

1 2 _2q2

—rCR s =0, j=2,3,..Ng—1 (22
The boundary conditions (21) are simply imposed as follows:
k—1,1 k—1,N,
Carns =0, CppRs” = Smax — K. (23)

Relations (22)-(23) constitute a tridiagonal system of linear equations in the
unknowns CZ;XE, C’Z;Xg, v Z;Z’gs, which is solved very quickly by means
of the well known Thomas algorithm (see [54]). According to the recursion
(13)-(17), the numerical scheme (22)-(23) is repeated at every time-step tx,
k = Ny, Ny_1,...,1, so that we end up with the values CK;AS, CZtQ,ASv ey CZ;YASS,
for every k € {0,1,..., N }.

The approximations C’g’t{ AS CZ’tQ, AS> CZ’;V Ag become more and more ac-
curate as the number of discretization points Ng increases, or, equivalently, as

. k,1 k.2 k,Ng
AS tends to zero. Precisely, CAt’AS, CAt,AS, - CAt’AS converge to

Cgt(sl)v Czt(SQ)v 00y Cgt(SNS)

like O(AS?) as AS — 0 (see [51]). Therefore, it is possible to remove the
O(AS?) error term using the (quadratic) Richardson extrapolation procedure
[27]:

ACk2i-1 k.j

k,j o At,AS/2 At,AS .
CAt],AS,extr - 3 ’ J = 1727"'7N57 (24)
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where Cz’f’ AS/2) ¢ =1,2,...,2Ng — 1, denote the approximate option prices
obtained using a finite difference mesh of 2Ng — 1 nodes (i.e. with grid spacing
AS/2).

The values Cz’tj’ AS, extr? 7 =1,2,..., Ng, are extremely accurate approxima-
tions of the true American option prices. In particular, the spatial discretization
error (in the S variable) tends to zero faster than AS? as AS tends to zero.

Finally, we note that the numerical method described above provides an
approximation of the American option price only at the nodes S, S, ..., Sny.
Then, for values of S that do not coincide with the mesh nodes, the American
option price is obtained by cubic extrapolation of the option prices at the four
nodes closest to S (which is extremely quick and does not compromise the
0(AS?) accuracy of the spatial extrapolation scheme described above).

3.3. Implied Volatility Estimation

Let V1, V5, ..., V,, denote realized prices of American options. In particular,
let Vi, V3, ..., Vi,, be the prices (observed at different times) of a set of options
written on the same underlying stock but having different strikes and maturities.
Moreover, let VAT (o), VAP (o), ..., V]\‘il: (o) denote the corresponding values of
the theoretical prices under the FBM (computed according to the numerical
method described in Section 3.2). Note that as explicitly stated, the quantities
VlAP , VQAP s eeey V]é:: depend on the volatility parameter o.
Let us define the objective function:

Nop

o)=Y (Vi- V()" (25)

i=1

which measures the distance between the theoretical and the empirical option
prices. We want to find the value of ¢ that minimizes G, i.e. the implied
volatility 0%z, is obtained such that:

Oppy = arg min G(0). (26)

Problem (26) is solved using the numerical optimization algorithm developed
by Brent [14], which is based on a quadratic approximation of the objective
function G. For a detailed description of this method the reader is reminded
to [48]; here, we simply observe that the Brent’s algorithm does not require
knowledge of the derivative of G with respect to o (which is not available since
the theoretical option prices are obtained by finite difference approximation),
and thus turns out to be very suitable to solve problem (26).
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Remark. We do not perform a theoretical investigation of the convergence
of the numerical estimation method developed in this section. In fact, such an
analysis would be an extremely difficult task, due to the many different tech-
niques employed (the Bermudan approximation, the finite difference scheme,
the space/time Richardson extrapolation, the Brent’s algorithm), and goes be-
yond the scope of this paper. Therefore, as is customary when dealing with
implied volatility estimation, the computational properties of the algorithm de-
scribed above are directly tested by numerical approximation. This is done in
the next section.

4. Numerical Results

The numerical simulations are performed on a personal computer with an
Athlon II X2 Dual Core Processor 1.3 GHZ 3.00 GB Ram and the software
codes are written in Matlab 7.0.

We compute the volatility of the FBM for 12 equities of the FTSE-AIl Shares
Italian market, namely: Autogrill (AGL), Atlantia (ATL), Eni (ENI), Fiat
(F), Finmeccanica (FNC), Generali (G), Intesa Sanpaolo (ISP), Lottomatica
(LTO), Luxottica (LUX), Saipem (SPM), Stmicroelectronics (STM), Unicredit
(UCG). For each one of these equities we calculate the Hurst exponent based
on approximately 1200 daily prices observed from 2nd January 2006 to 1st
December 2010 (i.e. N, = 1200). This set of data is very large. Therefore,
upon the almost sure convergence of the R/S estimator (see Section 3) the value
H* is deemed statistically accurate. Moreover, for each one of the above equities
we calculate the implied volatility using both Call and Put American options
with various different strikes and maturities equal to 3, 6 and 12 months. In
particular, our database of options covers the period of time from 4th January
2010 to 1st December 2010, so for each one of the 12 equities considered we
have a number of option prices that ranges approximately from 200 to 2000
(i.e. 200 < N,p, < 2000).

Following a very common approach, the (continuous) dividend yield ¢ (see
equation (2)) is determined by imposing the equivalence between the discounted
actual value of the continuous dividend flow and the discounted actual value of
the discrete dividends that have been paid in the time period from 4th January
2010 to 1st December 2010. As far as the interest rate r is concerned, we use the
12 month Euribor rate at 1st December 2010, as many of the options considered
expire between 1st December 2010 and 1st December 2011.

However, we have performed several numerical experiments (some of which
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are not reported in the paper) in which we have used different (and reasonable)
values of ¢ and r, and we have found that the effect of these two parameters on
the implied volatility is negligible.

The estimates H* and o* are shown in Table 1, in which, for the sake of
completeness, we also report the value of the objective function at o*. In partic-
ular, the parameters in Table 1 are obtained using the finite difference method
with 41 spatial nodes (Ng = 41) and with cubic Richardson extrapolation in
time (relation (19)), which, as shown in the following, allows us to compute the
implied volatility with at least 3 correct decimal digits.

Equity q m* o* G(o%)

AGL 0.019 | 0.5556 | 0.2863 | 0.1044
ATL 0.098 | 0.5224 | 0.2620 | 4.8667
ENI 0.096 | 0.5034 | 0.2400 | 13.1277

F 0.029 | 0.5175 | 0.3696 | 15.6705
FNC 0.038 | 0.5530 | 0.2495 | 20.4664
G 0.024 | 0.5865 | 0.2675 | 7.1418

ISP 0.035 | 0.6448 | 0.3348 | 3.6539
LTO 0.048 | 0.5877 | 0.2346 | 42.8268
LUX 0.023 | 0.5073 | 0.2296 | 0.0661
SPM 0.030 | 0.5326 | 0.2851 | 17.6876
STM 0.029 | 0.5658 | 0.3075 | 0.5020
UCG 0.017 | 0.6085 | 0.3492 | 0.4841

Table 1: Estimation of the parameters of the FBM, Ng = 41,
quadratic extrapolation in time

Looking at the Table 1, we may note that the values of H* are between
0.5034 and 0.6448, so all the equities considered have a persistent trend. Fur-
thermore, the volatility ¢* takes values between 0.2296 and 0.3696, which are
typical values of volatility.

We have also analyzed the dependence of ¢* on the mesh size parameter
Ng and on the order of the Richardson extrapolation in time (two or three,
corresponding to relations (18) or (19) respectively). In particular, in Table
2 and Table 3 we show the values of ¢* and the computer times obtained by
choosing different values of Ng and by using both the linear and the quadratic
extrapolation in time (for the sake of brevity, we only report the results con-
cerning ATL and UCG, as the results experienced for all the remaining equities
are substantially identical).

Looking at Table 2 and Table 3, we may see that, by choosing Ng = 41 and
by using the linear Richardson extrapolation, the implied volatility is obtained
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with at least three correct digits in a time smaller than two seconds. Therefore,
the method proposed is accurate and fast. This conclusion is also strengthened
by the fact that we are using a significantly large database of option prices
(200 < N,y < 2000), and thus we have to solve the partial differential problem
(13)-(15) a large number of times.

Linear extrapolation in time | Quadratic extrapolation in time
Ng o* CPUTime o* CPUTime
21 0.2610 1.48 (s) 0.2610 2.46 (s)
41 | 0.2620 1.82 (s) 0.2620 3.61 (s)
81 | 0.2621 2.90 (s) 0.2621 5.99 (s)

Table 2: Computation of the implied volatility, ATL

Linear extrapolation in time | Quadratic extrapolation in time
Ng o* CPUTime o* CPUTime
21 | 0.3490 1.30 (s) 0.3490 2.44 (s)
41 | 0.3492 1.79 (s) 0.3492 3.62 (s)
81 | 0.3492 2.78 (s) 0.3492 5.11 (s)

Table 3: Computation of the implied volatility, UCG

Comparison with the Black-Scholes model:

Finally, let us briefly compare the FBM with the GBM, on which is based
the famous Black and Scholes model. To this aim, the volatility of the GBM
implied by American option prices is estimated using the method developed

1
in Section 3.2 and 3.3, in which we simply set H = 3 (as already recalled,

for H = % the FBM degenerates to the GBM). In the following, in order to
avoid confusion, the volatility of the FBM will be denoted by o%5,,, whereas
the volatility of the GBM will be denoted by ¢f.5,,. As done in [28], let us
consider the following indicators:

_ 9 B — O-)(k}BM|’ o = G(oFpm) *_ G(UZJBM”’ (27)
G(orpm)

which measure the deviations in the values of volatility and objective function

between the FBM and the GBM.

The values of €, and ez obtained for the 12 equities considered so far are
shown in Table 4. We may note that both e, and ez are very small. In

€ "
OrBM
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particular, the (relative) difference between the volatility of the FBM and the
volatility of the GBM is always smaller than 4.63 x 1072; in addition, we also
observe that the objective function does not change significantly when passing
from the GBM to the FBM (the maximum value of eg is 8.71 x 10~2). Therefore,
we conclude that the FBM provides only a small improvement over the GBM

as far as the pricing of American options is concerned.

Equity € Jel

AGL 279 x 1072 | 1.83 x 1072
ATL 577 x 1073 | 2.20 x 1072
ENI 7.89 x 107* | 1.88 x 1073
F 7.46 x 1073 | 2.48 x 1073
FNC 1.76 x 1072 | 1.70 x 10~3
G 1.23 x 1073 | 8.71 x 1072
ISP 463 x 1072 | 7.15 x 1072
LTO 258 x 1072 | 1.02 x 1073
LUX [924x1073 | 5.48 x 1073
SPM | 1.23x 1072 | 4.65 x 1072
STM | 1.62x 1072 | 5.80 x 1073
UCG |3.69x1072]2.56 x 1072

Table 4: Comparison between the FBM and the GBM

5. Conclusions

We propose a new and highly efficient approach to compute the volatility of the
FBM implied by American option prices. To this aim, the theoretical values of
American option prices under the FBM are obtained using a finite difference
scheme enhanced by a suitable space-time Richardson extrapolation procedure.
Such an approach, which is used in conjunction with the Brent’s optimization
algorithm, allows us to considerably reduce the complexity of the overall esti-
mation problem. Thus, the volatility of the FBM is evaluated very accurately
and quickly (on a normal personal computer the implied volatility is obtained
with at least three correct digits in only a couple of seconds). The computa-
tional performances of the method proposed are demonstrated by applying it to
the time-series of several stocks belonging to the Italian FTSE-All Share. From
the modeling standpoint, these simulations highlight that the FBM provides
only a small improvement over the more conventional GBM.
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