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Abstract: This study presents a mathematical analysis of a hydromagnetic
boundary layer flow, heat and mass transfer characteristics on steady two-
dimensional flow of a micropolar fluid over a stretching sheet embedded in
a non-Darcian porous medium with uniform magnetic field in the presence of
thermal radiation. The governing system of partial differential equations is first
transformed into a system of non-linear ordinary differential equation using the
usual similarity transformation. The resulting coupled non-linear ordinary dif-
ferential equations are then solved using perturbation technique. With the help
of graphs, the effects of the various important parameters entering into the prob-
lem on the velocity, temperature and concentration fields within the boundary
layer are separately discussed. The effects of the pertinent parameters on the
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wall temperature, wall solutal concentration, skin friction coefficient and the
rate of heat and mass transfer are presented numerically in tabular form. The
results obtained showed that these parameters have significant influence on the
flow.
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Key Words: mass transfer, hydromagnetic flow, porous medium, perturba-
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1. Introduction

The study of heat and mass transfer has attracted the interest of numerous
researchers due to its applications in sciences and engineering problems. Such
applications include nuclear reactor, MHD generators, geothermal energy ex-
tractions, analyzing the behaviour of exotic lubricant, the flow of colloidal
suspension or polymeric fluid and the boundary layer controlling the field of
aerodynamics. In nature and industrial applications many transport processes
exist where the transfer of heat and mass takes place simultaneously as a re-
sult of combined buoyancy effects of thermal diffusion and diffusion of chemical
species. In chemical process industries such as food processing and polymer
production, the phenomenon of heat and mass transfer is also encountered.
Rebhi [12] studied unsteady natural convection heat and mass transfer of mi-
cropolar fluid over a vertical surface with constant heat flux. The governing
equations were solved numerically using McCormack’s technique and effects of
various parameters were investigated on the flow. Eldabe and Ouaf [5] solved
the problem of heat and mass transfer in a hydromagnetic flow of a micropo-
lar fluid past a stretching surface with ohmic heating and viscous dissipation
using the Chebyshev finite difference method. Keelson and Desseaux [6] stud-
ied the effect of surface conditions on the flow of a micropolar fluid driven
by a porous stretching surface. The governing equations were solved numeri-
cally. Sunil et al. [15] studied the effect of rotation on a layer of micropolar
ferromagnetic fluid heated from below saturating a porous medium. The re-
sulted non-linear coupled differential equations from the transformation were
solved using finite-difference method. Rahman and Sultan [13] studied the ther-
mal radiation interaction of the boundary layer flow of micropolar fluid past
a heated vertical porous plate embedded in a porous medium with variable
suction as well as heat flux at the plate. The governing equations were solved
numerically by an efficient, iterative, finite - difference method. Mahmoud [7]
investigated thermal radiation effect on magneto hydrodynamic flow of a mi-
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cropolar fluid over a stretching surface with variable thermal conductivity. The
solution was obtained numerically by iterative, Runge-Kuta order-four method.
Magdy [11] studied unsteady free convection flow of an incompressible electri-
cally conducting micropolar fluid, bounded by an infinite vertical plane surface
of constant temperature with thermal relaxation including heat sources. The
governing equations were solved using Laplace transformation. The inversion of
the Laplace transforms was carried out with a numerical method. Mohammed
and Abo-Dahah [8] investigated the effects of chemical reaction and thermal
radiation on heat and mass transfer in magneto hydrodynamic micropolar flow
over a vertical moving porous plate in a porous medium with heat generation.
The solution was obtained numerically by finite-difference method. Bayomi et
al. [2] consider magneto hydrodynamic flow of a micropolar fluid along a vertical
semi-infinite permeable plate in the presence of wall suction or injection effects
and heat generation or absorption. The obtained self-similar equation were
solved numerically by an efficient implicit, iterative, infinite-difference method.
Reena and Rana [14] investigated double-diffusive convection in a micropolar
fluid layer heated and soluted from below saturating a porous medium. A
linear stability analysis theory and normal mode analysis method was used.
Mohammed et al [9] studied magneto hydrodynamic convection with thermal
radiation and mass transfer of micropolar fluid through a porous medium occu-
pying a semi-infinite region of the space bounded by an infinite vertical porous
plate with constant suction velocity in the presence of chemical reaction, inter-
nal heat source, viscous and Darcy’s dissipation. The highly non-linear coupled
differential equations governing the boundary layer flow, heat and mass trans-
fer were solved using finite difference method. Heat and mass transfer in a
hydromagnetic flow have many applications in science and engineering. This
present model have applications in biomedical and engineering. For instance in
the dialysis of blood in artificial kidney, flow in oxygenation, etc. Engineering
applications includes the porous pipe design, design of filter, etc. Motivated by
the above previous works and possibly applications, the present paper study
heat and mass transfer in a hydromagnetic flow of a micropolar fluid over a
porous medium using Boussineq model in the presence of uniform magnetic
field. The transformed non-linear boundary layer equations together with the
boundary conditions are solved analytically using perturbation technique.
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Boundary Layers

Impermeable
stretching sheet

Figure 1: Physical model

2. Mathematical Formulation

We consider a steady, two-dimensional mixed convection flow of an incompress-
ible, electrically conducting micropolar fluid over a stretching sheet. The fluid
flows towards a surface coinciding with the plane y = 0, the flow region (y > 0).
The origin is fixed as shown in Figure 1. The z-axis is taken in the direction
along the sheet and y-axis is taken perpendicular to it. The flow is generated
by the action of two equal and opposite forces along the z-axis and the sheet
is stretch in such a way that the velocity at any instant is proportional to the
distance from the origin (x = 0). The flow field is exposed to the influence of
an external transverse magnetic field of strength B = (0, By, 0).

With these assumptions, the continuity equation, momentum equation, an-
gular momentum equation, energy equation and mass diffusion equation gov-
erning the flow are
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oC oC 0*C

Us + va—y = Da—y2. (5)
Here u and v are the velocity components along x and y directions,p is the den-
sity, T is the temperature of the fluid,Cj is the form of drag coefficient which
is independent of viscosity and other properties of the fluid but is dependent
on geometry of the medium, k is permeably of the porous medium, C,, is the
specific heat at constant pressure, v is the kinematic viscosity, ¢ is the electri-
cal conductivity of the fluid, N is the components of micro rotation or angular
velocity whose rotation is in the direction of the x — y plane, and j, v and k7
are the microinertia per unit mass, spin gradient viscosity and vortex viscos-
ity respectively, g, is the radiation heat flux, §; and (. are the coeflicient of
thermal expansion and concentration expansion respectively. The spin gradient
viscosity 7y, which defines the relationship between the coefficient of viscosity
and microinertia are as follows:

v =+ 5 (0

in which K = % (w0 > 0) is the material parameter. Here all the material
constants, ,u, k,j are non-negative and we take j = 7 as a reference length.
The appropriate physical boundary conditions for the problem under study are
given by

u:uw:bx,vzo,N:—ng—Za‘cy:O, (7)

oT x Oc T
—k— = qu = Do(5)*, —D— =my, = D1(5)* at y =0, 8
u—0, N—0 asy — o0, 9)
T — Te, C = Cx asy— 0. (10)

Here [ is the characteristic length, T}, is the wall temperature of the fluid and
Tw is the temperature of the fluid far away from the sheet, Cyis the wall con-
centration of the solute and C is the concentration of the solute far away
from the sheet, D,, D; are constant and k = koo(1 + €6(n)), Chiam [4]; n is a
constant such that 0 < n < 1. The case when n = 0, is called strong concen-
tration, which indicates N = 0 near the wall represents concentrated particle
flows in which the micro-elements close to the wall surface are unable to rotate,
see Mathur and Jena [10]. The case when n = 3 indicates the vanishing of anti-
symmetric part of the stress tensor and denotes weak concentrations where as
n = 1 is used for modelling of turbulent boundary layer flows, Ahmadi [1]. It is
worth mentioning that £ = 0 describes the classical Navier-Stokes equation for
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a viscous and incompressible fluid. The non-uniform heat source/sink is given
by
q/// — kUw

v

[A*(Tw _Too)f/+B*(T_Too)]v (11)

where A* and B* are the coefficients of space and temperature - dependent
heat source/sink, respectively. The case Ax > 0 and Bx > 0 corresponds to
internal heat generation whileA* < 0 and B* < 0 corresponds to internal heat
absorption. We use the following similarity variables and dimensionless steam
function to transform equation (2) and (3):

b
1%

U =baf'(n),v=Vbvf(n),n= \/gy,N = ba(=)29(n). (12)

Substituting (12) into equation (2) and (3), we have
PP = A K" = Da” ' —af 4 Ky — Ha f' + Gr. 0+ Geg, (13)

fla—fg =1+ %)g” - K(29+ f"), (14)

where a = C\"/%x is local inertia coefficient parameter, Da™! = £ is inverse

Darcy number, Ha = , /%Bo is the Hartmann number, Gy = %;Tm)) is local
98t(C—Coo)
b2

temperature Grashof number, G, = is local concentration Grashof

number and K = ™ is material parameter. The appropriate boundary condi-
tions (7) and (9) now become as follows:

fn) = 0,f'(n) =1gn) =-nf"(n) at n=0,
f'(n) — 0,9(c0) — 0 as 7 — oo, (15)
)

where n = , we can take g(n) = —1 "(n). So combining (13) and(14), we will

reduce to a single non-linear ordinary differential equation as

K
A= f =0+ Ff" = Dalf! af® — Hdf' + G+ Gep.  (16)
Subject to the appropriate boundary conditions
fn)=0,f(n)=1at n=0,f(n) =0 asn— oo, (17)

following Rosseland approximation (Brewstar [3]) the radiative heat flux g, is

modeled as do* 9T
0_*
= — —_— 18
4 3k* Oy (18)
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Here o* is the Stefan-Boltzman constant and k* is the mean absorption coef-
ficient. Assuming that the difference in temperature within the flow are such
that 7% can be expressed as a linear combination of the temperature, we expand
T* in Taylor’s series about T as follows:

T =TL +4AT3 (T — To) + 6T2(T — Too)* + .. ., (19)

and neglecting higher order terms beyond the first degree in (T'— T,,), we have
T ~ —3Ta + 4T T. (20)

Differentiating equation (18) with respect to y and using equation (20), we

obtain
dgr _ 16T3 0" O°T

oy 3k* 8y
Substituting equation (21) into equation (4), we have

(21)

or  or 1 T3 o* °T oB3 2 q" uo,0u

il = K+ 16= )2 (22
ugs TV Ty pcp( 16 (83/) (22)

3k* )6y2 + pCpu pCh + pCp

The thermal boundary conditions for solving (22) depend on the type of heating
process considered. Now the non-dimensional temperature 6(n) and concentra-
tion ¢(n) are define (in PHF case) as

T—-Tw C—-Cx

where
Do 2y ¥ - Do ()2 [V
T T = 202 o) and T - T = LR 2 (2
D D
€ Co= 213 \fgz) and Gy — Coo= =T [2. (25)

Using equation (23) into equation (22), yields

(1+ N, +e0)0" + Pr(f0 — f'0) + e0*> + PrHd*E,f'2
+(1+€e0)(A*f + B*0) + PrEf" = 0. (26)
Subject to the boundary conditions

1
1+e¢

0(n) = atn =0,0(n) — 0 as n — oo, (27)
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using equation (23) in equation (5), we have

¢(n) = Sc(¢'f —26f') = 0. (28)

And the corresponding thermal boundary conditions are:

o) = 7 M= 0,¢(n) — 0 as n — oo, (29)
where N, = ég?;(i: is thermal radiation parameter, Pr = /CP is Prandth
number, Ey = ECKOO\/j is the scaled Ecket number, E. = —ZC is the Eckert

number and S, = 7 is the Schmidt number.

3. Method of Solution

Equation (16), (26) and (28) are highly coupled non-linear ordinary differential
equation and since € << 1, we assume a perturbation of this form

f=1+efi+éef, (30)
9*—1_’_6—1-691—1—6292, (31)
1
¢ = i +epr + 9o, (32)
where fo = 1,00 = —%ﬂ,gbo = —1—+E. Invoking equation (30) - (32) into equation

(16), (26) and (28) and neglecting terms of O(e®) and higher, we have the
following sets of equations

(1+ )f{” — (Da™' + Ha?) f{ = =G0, — G, (33)
" / * _ B*
(1+ N,)0! + Pro}, + B*6, = T (34)
1+ Schy =0, (35)
K "
(1+ 5)]‘2 + fi = (Da™' + Ha®) fy = f1f{? — af® — G — Geg,  (36)
(1+ N,.)05 + Proy+ By = — : Jlr 60’{ — Prfi6; — 1iprf’2

—PrHa*E,f? — A* + 7

01, (37)
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2
3+ Segh = —Segnfi - - Sef?, (38)

Solving equation (33) - (38) with the boundary conditions to obtain the expres-
sion for velocity, temperature and concentration distributions as

fn) = 1T+e(As+ Agem™7 + Age™™7 + A7€75m) + €2(Ags + Agge™ ™21
—|—A2777€*m277 + A28672m2n + A2967(m1+m2)n + Agoef(Schmz)n +
Agrem™ 4 A32€72m”7 + A33e*(5c+m1)77

‘|‘A34€7SCT7 + A35672SC?7’ (39)
1
0 = - Aoe™ MM _ 2( A, p—mn
(n) 1+€+e( 2€ (1+€)2)+6( -
+A18?76_m”7 +A19€—(m1+m2)n +A206—2m1n —|—A21€_(Sc+m2)77
+A226_2m277 +A23e—(50+m2)n +A24€—25cn’ (40)
1
o) = Cl+4e + eA1e %M 4+ 2(Age M 4+ Aygne 5 + Ap e (Setm2n
€
+A12e*(5c+m1)77 +A13672SC77 +A14e*2m2’7
—|—A15e*(m1+m2)77 + A16672m1n. (41)
Here:
_ Pr++/Pr2—4(1+N,)B*
= 20+ N,)
141440+ E)(Da L Ha?)
" 20+ E)
_ 1
Al = —Tr
_ 1 1
A2 = 1+ e
- —Gy Ay
As = *(1+§)m?+m§£(Da—l+Ha2)ml
A pr— _G()Al
! —(1+%)Sc}+Sc2+(Da~14+Ha?)Sc
Ay = —1EScdArtm Ag

m2

A3 = _(A4 + A6 + A7)
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_ Sc2A A3

3Sc

(1+6)Sc2A1A474502m2A4A7

— (14+€)((Sct+m2)2—Sc(Sc+mz2))

(14€)Sc? A1 Ag—4Sc?mq Ag Ay

— (14+€)((Sct+m1)2—Sc(Sc+m1))

(14€)Sc? A1 A7—2Sc3 A2
(1+€)2S5c?)

—QScmg Ai

T 4m2—2Scmy

4SemimaoAsAg
(1+€)((m1+m2)2—Sc(mi+mz))

2Scm? A2
(1+¢€)(4m?—Semyq)

Ag = — (7= + Ay + Ao + Az + Ay + Ags + Agg)

Agg =

Asp =

1+€

_ Agm%+(l+6)PT‘A2m1A3

1+€

(1+€)PrAsmy Ay —2Pr+(1+€)PrHa? Es—(1+¢) A*
(14€)((1+N;) (m1+m2)2—Pr(mi+ms2)+B*)

_ (14+€)PrAomi Ag—2Prm3 A2+ (14¢) PrHa? E;m3 AZ—(14¢) A*m3 AZ

(14€)((1+ Ny )4m3—2Prm, +B*)

_ (1+€)PrAam; Ag—4PrScmy Ag A7+ (1+€)2PrHa? Esmi Ag A7 —2(1+¢) A*my Ag A7

(1+€)((1+Ny)(Sc+m1)2—Pr(Sc+m1)+B*)

—2Prm3A%2—(1+€)PrHa? Esm3 A2+ (1+€) A*m2 A2
(14-€)((14+N,)4m3 —2Prmo+B*)

—2ma Ay ScA7(2Pr+(1+€)PrHa? Es—(14¢) A*)
(14+€)((1+Ny ) (m2+Sc)2—Pr(ma+Sc)+B*)

—Sc2A2(2Pr+(1+€)PrHa?Es—(1+¢€) A¥)
(14+€)((14+Ny)4Sc2—PrSc+B*)

— (13 + Ao + Ago + Aoy + Agy + Agz + Ags)

—AgAym3
(1+%)3m§72m27(Da_1+Ha2)

AZmi+(a—1)(m3AT+G A +Gc A1)
(1+ % )8m§74m§f(Da_1 +Ha?)ms

AgAs(m3+m2+2(a—1)m1ma)+GiA19+GeArs
(14+L) (m1+m2)3—(m1+m2)2—(Da~ 1+ Ha?)(m1+m2)

A4A7(m§7SC272(0171)m250)+GtA23+GCA11
(1+%)(5’0+m2)3—(5’cl+m2)2—(Da*1+Ha2)(Sc+m2)
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Aay — A6A3m% —GtA17
3l (1+%)m?fm%f(Da_1+Ha2)m1

Ao = AZm3(14+(a—1))+Gt A20+GcAe
32 (14 5)8m$ +4m?+2(Da~1+Ha2)m,

A — AgA7(m3I+Sc2+2(a—1)m1)+Gr A1 +GeAra
33 = (1+%)(5’0+m1)3—(5’cl+m1)2+(Da_1—Hag)(Sc+m1)

A34 — A7A35C2+GCA9
(1+%)Sc?’—SCQ—I—(Da*l—HaQ)Sc

Aor — A2S5c?(14+(a—1))+Gi Aza+GcArs
35 7 (14 E)85c3+45c2+(Da~ '+ Ha?)25c

Agg = 14+2mg Aog+(m1 +ma) A294(Sc+ma) Azo+mi Az1+2m1 Aza+(Sc+my ) Azz+ScAzs+2ScA*
ma

Ags = —(Agg + Aog + Agg + Azp + A3y + Azp + Ay + Aszs).

The physical quantity of most interest in science and engineering is the
skin-friction coefficient Cy, the Nusselt number Nu and Sherwood number Sh
which are defined by the following relations

2Tw

Cr=—, 42
f pU2 (42)
and the skin-friction on the plate T(w) is given by
o ou
Tw = (1 + kl)a_y)y=0' (43)
Substituting equation (12) in (42) and using (43), we have
1
CyRe; = (14 K)f"(0), (44)
where Re, = Y22 is the local Reynolds number.
The local Nusselt number is given by
(%_Z)yzo /
Ny=—"———=-0'(0) (45)
(T — TOW%
and the local Sherwood number is given by
(%)3;0 /
Sp = ———+= = —¢(0). (46)

(Cw - COO)\/E
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4. Results and Discussion

The formulation of the hydromagnetic boundary layer flow, heat and mass
transfer characteristics on steady two-dimensional flow with uniform magnetic
field in the presence of thermal radiation of a micropolar fluid over a porous
medium has been performed in the preceding sections. In order to understand
the physical situation of the problem and hence the manifestation of the various
parameters entering the problem, we have carried out the numerical calculations
for distribution of velocity, temperature and concentration across the boundary
layer for different values of the parameters. In this present study we have chosen
A* =0.01, B* =0.01, K = 0.2, Es = 0.05, € = 0.01, while Ha, Gy, G., Da™ !, a,
Nr, Pr and Sc are varied over a range which are listed in figures legends. Figure 2
shows the behaviour of velocity profile for different values of Hartmann number
Ha. It is well known that the Hartmann number represents the importance of
magnetic field on the flow. As depicted from Figure 2, when the Hartmann
number increases, the velocity profile decreases. This is due to the fact that
the introduction of transverse magnetic field normal to the flow direction has a
tendency to create a drag due to Lorentz force and hence results in retarding the
velocity profile. Thus when the Hartmann number increases, the Lorentz force
also increases due to which velocity profile decreases. From Figure 3 and Figure
4, it is observed that the effect of increasing the value of the thermal Grashof
number G, and concentration Grashof number G. is to increase the velocity
profile. Figure 5 illustrates the variation of velocity profile with n for various
value of inverse Darcy number. The plot shows that velocity profile decreases
with increase in the inverse Darcy number which shows the effect of increasing
inverse Darcy number is to decrease the velocity profile. Similar effects are
seen in case of increasing inertia coefficient parameter o as shown in Figure
6. Figure 7 represents the temperature profiles for various values of thermal
radiation parameter Nr in the boundary layer. This figure shows that the effect
of thermal radiation is to enhance heat transfer because of the fact that thermal
boundary layer thickness increases with increase in the thermal radiation. Thus
it is pointed out that the radiation should be minimized to have the cooling
process at a faster rate. Figure 8 illustrates the variation of temperature profile
for various values of Prandtl number. It is seen that the temperature decreases
with increasing the values of Prandtl number in the boundary layer which is
evident that temperature in the boundary layer falls very quickly for large
value of the Prandtl number because of the fact that thickness of the boundary
layer decreases with increase in the value of the Prandtl number. Figure9
shows the variation of temperature profile with n for various values of inverse
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Darcy number Da~!. It depicts that temperature increases with increase in the
value of inverse Darcy number which is due to the fact that obstruction on the
fluid motion is produced by the presence of porous medium which generates
heat and thereby temperature increases in the thermal boundary layer. Figure
10 shows that temperature increases with increase in the inertia coefficient
parameter. Figure 11 is the plot of concentration distribution for various values
of Schmidt number in the boundary layer. It is illustrated from the figure that
the concentration decreases with increase in the value of Schmidt number. This
is due to the fact that increase in Schmidt number causes thinning of the solutal
boundary layer thickness. It should be noted that the present results are in
excellent agreement with the results reported by Abel etal(2008) and Dulal and
Sewli (2009). Numerical values of the skin-friction coefficient f”(0), the wall
temperature §(0) and the wall solutal concentration ¢(0) are tabulated in tablel
for different values of material parameter K, Hartmann number Ha, Prandt
number Pr and inverse Darcy number Da~' . The tabular data shows that
magnetic field, Prandt number, inverse Darcy number and material parameter
reduce the skin-friction coefficient, whereas reverse trend is seen by increasing
the values of Es, G;, G. and Nr. It is further observed that wall temperature
increases with increase in K, Ha, Es, Nr and Da~! whereas opposite effect is seen
with increasing the value of Gy, G, and Pr. The effect of increasing the values
of K, Ha, Pr,Da~"! has the tendency to increase wall solutal concentration but
the other parameters like Es, G, G, and Nr have the effect of decreasing ¢(0).
Table 2 depicts the numerical values of coefficient of skin friction Cy, Nusselt
number Nu and Sherwood number Sj, for different values of Ha, Nr and Pr.
The tabular data shows that Nusselt number and Sherwood number decreases
with increasing in Hartmann number, Nusselt number increases as radiation
parameter increases while the effect of increasing the value of Prandth number
is to decrease the skin friction coefficient and mass transfer rate but increase
heat transfer rate which is in excellent agreement with Sewli and Dulal [16] and
Srinivasachanya and Ramreddy [17].

5. Conclusion

In this work, we have studied steady boundary layer flow and heat transfer
of a micropolar fluid-saturated porous medium past an impermeable stretch-
ing sheet with magnetic field and thermal radiation effects using the Darcy-
Brinkman Forchermer model. The resulting partial differential equations which
describe the problem, are transformed into ordinary differential equations by
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using similarity transformations. The resulted non-linear ordinary differential
equations are solved by perturbation technique. Following conclusions can be
drawn from the results obtained:

* Velocity decreases with increase in Hartmann number, inverse Darcy num-
ber and inertia coefficient parameter but reverse trend is seen by increase ther-
mal Grashof number Gt and solutal Grashof number Gc,

* Temperature increases with increase in the value of the thermal radiation,
inverse Darcy number and inertia coefficient parameter whereas it decreases
with increase in the value of the Prandt number,

* Concentration decreases with increase in the value of the Schmidt number.

The results are presented as velocity, microrotation, temperature and con-
centration profiles in Figures 2-11 and Tables 1-2 below:

=—f=Ha=2.0
==Hz=4.0

=g==Ha=6.0

Figure 2: Variation of f’ for different values of Ha.
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Figure 3: Variation of f’ for different values of Gt.
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Figure 4: Variation of f’ for different values of Ge.
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Figure 5: Variation of f’ for different values of Da~!
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Figure 6: Variation of f’ for different values of a.
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Figure 7: Variation of § for different values of Nr.
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Figure 8: Variation of 8 for different values of Pr.
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12 4

Figure 9: Variation of @ for different values of Da ™!
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Figure 10: Variation of 6 for different values of a.
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Figure 11: Variation of ¢ for different values of Sc.

K |[Ha| Es |G, |G. | Ne | Pr|[Da '] f7(0) 6(0) #(0)

1.0 10.1]0.05|50]|40|35(30| 05 | 160434 | 0.70583 | 1.31521
201011005 |50]40]|35 (30| 05 | 1.32150 | 0.71848 | 1.35369
0.2|1.0]005|50]40]|35|3.0]| 05 | 1.61046 | 0.74224 | 1.36108
021201005 |50]40]|35|30]| 05 |0.79668 | 0.87770 | 1.53207
0.210.1]005|50]40]|35 (30| 05 | 197707 | 0.71402 | 1.31493
021011025 |50]40]|35(3.0]| 05 |1.97922 | 0.71551 | 1.31356
0.210.1]005|601]40]|35 (30| 05 |212904 | 0.70855 | 1.30228
0.210.1]005|801]40]|35|3.0]| 0.5 | 242051 | 0.69794 | 1.28087
0.210.1]005|501]50]35(30]| 05 |230513 | 0.69968 | 1.27993
0.210.1]005|50]70]|35|30]| 05 |289612 | 0.65795 | 1.20833
0.210.1]005|50]40]|50(30]| 05 | 218918 | 0.83756 | 1.26950
0.2 10.1]005|501]40]6.0[30]| 0.5 | 228906 | 0.89762 | 1.25801
0.210.1]005|50]40]|35 (40| 0.5 | 1.82115 | 0.60911 | 1.31143
0.210.1]005|501]40]|35|6.0]| 0.5 | 1.65949 | 0.50298 | 1.32867
0.210.1]005]|50]40]|35|30] 0.6 | 1.91600 | 0.69905 | 1.30365
0.210.1]005|501]40]|35|3.0]| 2.0 | 1.39126 | 0.73491 | 1.40513

Table 1: Values of f(0), 6(0), ¢(0) for different values of K, Ha, Es,
Gy, Ge, Pr, Nr and Da~! when A = 0.01, B = 0.01 and € = 0.01
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Ha | Nr | Pr Cy Ny, Sh

0.0 | 3.5 3.0 1.97683 | 0.34286 | 0.47826
1.0 | 3.5] 3.0 | 1.62968 | 0.24105 | 0.46217
2.0 | 3.5 | 3.0 | 0.80966 | 0.15098 | 0.41151
0.1 ] 5.0 | 3.0 2.21928 | 0.12037
0.1 ] 6.0 (3.0 232961 | 0.18692
0.1 |7.013.0]2.42161 | 0.24324
0.1 3.5 4.0 1.84265 | 0.31832 | 0.20160
0.1]35]6.0 ]| 1.67848 | 0.41641 | 0.11923
0.1 3.5 ]8.0 | 1.58619 | 0.71502 | 0.01902

Table 2: Values of C'y, N, and Sh with different values of Ha, Nr and
Pr when A =0.01, B = 0.01, K = 1.0, Es=0.05, G; = 5.0, G, = 4.0,
Da=!' =05, ¢=0.01 and o = 0.1
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