International Journal of Applied Mathematics

Volume 26 No. 1 2013, 83-91

ISSN: 1311-1728 (printed version); ISSN: 1314-8060 (on-line version)

doi: http://dx.doi.org/10.12732/ijam.v26i1.8

ON WEAK DOMINATION IN A ZERO DIVISOR GRAPH

J. Ravi Sankar¹, S. Meena²

¹Department of Mathematics
Saradha Gangadharan College
Puducherry, 605 004, INDIA

²Department of Mathematics
Government Arts College
Chidambaram, 608 104, INDIA

Abstract: Let R be a commutative ring and let $\Gamma(Z_n)$ be the zero divisor graph of R. The zero-divisor graph of a ring is the graph(simple) whose vertex set is the set of non-zero zero-divisors, and an edge is drawn between two distinct vertices if their product is zero. For a graph $\Gamma(Z_n)$, a set $S \subseteq V(\Gamma(Z_n))$ is a weak dominating set if every vertex v in $V(\Gamma(Z_n)) - S$ has a neighbour u in S such that the degree of u is not greater than the degree of v. The minimum cardinality of a weak dominating set of $\Gamma(Z_n)$ is the weak domination number, $\gamma_w(\Gamma(Z_n))$.

In this paper, we present some bounds on $\Gamma(Z_n)$ and give exact values for $\gamma_w(\Gamma(Z_{2p})), \gamma_w(\Gamma(Z_{p^2})), \gamma_w(\Gamma(Z_{pq})), \gamma_w(\Gamma(Z_{2^np})), \gamma_w(\Gamma(Z_{3^np}))$ and $\gamma_w(\Gamma(Z_{pqr}))$.

AMS Subject Classification: 05C25, 05C69

Key Words: commutative ring, zero divisor graph, weak domination

1. Introduction

Let R be a commutative ring and let Z(R) be its set of zero-divisors. The zero-divisor graph of a ring is the graph(simple) whose vertex set is the set of non-zero zero-divisors, and an edge is drawn between two distinct vertices if their product is zero. Throughout this paper, we consider the commutative ring by R and zero divisor graph $\Gamma(R)$ by $\Gamma(Z_n)$. The idea of a zero-divisor

Received: January 18, 2013

© 2013 Academic Publications

[§]Correspondence author

graph of a commutative ring was introduced by I. Beck in [2], where he was mainly interested in colorings. The zero divisor graph is very useful to find the algebraic structures and properties of rings.

In [9], Sampathkumar and Pushpa Latha have introduced the concept of weak domination in graphs. The weak domination number of $\Gamma(Z_n)$, denoted by $\gamma_w(\Gamma(Z_n))$ is defined by, $\Gamma(Z_n) = \{|S|, \text{ where } S \subseteq V(\Gamma(Z_n)), S \neq \phi, N(S) \neq V(\Gamma(Z_n))\}$ which satisfies the following conditions; (i) $N(S) \cup S = V(\Gamma(Z_n))$ (ii) $N(S) \cap S = \phi$ (iii) $d(u) \leq d(v)$ for $u \in S$ and $v \in N(S)$ (iv) no two vertices in S are adjacent. The weak domination number is the minimum cardinality of a weak dominating set of $\Gamma(Z_n)$. The open neighborhood of a vertex $v \in V$ is $N(v) = \{u \in V/uv \in E\}$. In this paper, we give upper bounds of weak domination number of zero divisor graphs. For notation and graph theory terminology, we in general follow [3], [4], [5] and the structure of the zero divisor graph is [1], [6], [7], [8].

2. Weak Domination Number of $\Gamma(Z_n)$

Theorem 1. A graph $\Gamma(Z_n)$ has a domination set iff $\Gamma(Z_n)$ is connected and n is a composite number.

Theorem 2. For any graph $\Gamma(Z_{2p})$, where p is any prime number, then $\gamma_w(\Gamma(Z_{2p})) = p - 1$.

Proof. The vertex set of $\Gamma(Z_{2p})$ is $\{2, 4, 6, ..., 2(p-1), p\}$. Let u=4 and v=p then 2p must divides uv. That is 2p divides 4p. Clearly, u and v are adjacent vertices. Similarly, any vertex u in $V(\Gamma(Z_{2p}))$ and v=p then 2p must divides uv. It seems that p is adjacent to all the vertices in $V(\Gamma(Z_{2p}))$. Let $u=4\neq p$ and $w=6\neq p$ in $V(\Gamma(Z_{2p}))$ such that $uw\neq 0$. It means that 2p does not divide uv=24. Clearly, no two vertices in $\Gamma(Z_{2p})$ are adjacent, except p. Using theorem, (3.2) in [7], $\Gamma(Z_{2p})$ is a star graph.

Let S be a weak dominating set of $\Gamma(Z_{2p})$. Since, $|V(\Gamma(Z_{2p}))| = p$. Let us assume that $\gamma_w(\Gamma(Z_{2p})) = 2$ with $p \geq 3$. It is enough to show that $\Gamma(Z_{2p}) = K_{1,p-1}$. If p = 3, then $\Gamma(Z_{2p}) = K_{1,2}$. Assume that $p \geq 5$ and $\Gamma(Z_{2p}) \neq K_{1,p-1}$. This means that there exists a path of length at least three in $\Gamma(Z_{2p})$. Let uvwz be a path in $\Gamma(Z_{2p})$, with u and z are pendant vertices. Since, $\Gamma(Z_{2p})$ is a connected graph with $p \geq 3$ vertices and let P be the set of pendant vertices of $\Gamma(Z_{2p})$ then $P\subseteq S$. Clearly any vertex $u \in S$ and $v \in V(\Gamma(Z_{2p})) - S$ then $deg(u) \leq deg(v)$. If u is pendant vertex then, $1 = deg(u) \leq deg(v)$, which implies, $u, z \in S$. Thus,

it follows that v is weekly dominated by u and w is weekly dominated by z. Consequently, $\{u, v, z\} \subseteq S$ or $\{u, w, z\} \subseteq S$ or $\{u, v, w, z\} \subseteq S$ or $\{u, z\} \subseteq S$. This, contradicts our assumption $\gamma_w(\Gamma(Z_{2p}))=2$. Hence, $\Gamma(Z_{2p})=K_{1,p-1}$ and $\gamma_w(\Gamma(Z_{2p}))=p-1$.

Theorem 3. If p is any prime > 2 then, $\Gamma(Z_{2p}) = K_{1,p-1}$ if and only if $\gamma_w(\Gamma(Z_{2p})) = \Delta(\Gamma(Z_{2p}))$.

Proof. The theorem is true for order 2 or 3. So, we shall suppose that $\Gamma(Z_{2p})$ has at least 4 vertices. Let us assume that $\Gamma(Z_{2p}) = K_{1,p-1}$. Let u be a support vertex of $\Gamma(Z_{2p})$ that is adjacent to two (or more) end vertices that does not belong to a weak dominating set. Let E_u denote the set of edges incident with u and S be a minimum weak dominating set for $\Gamma(Z_{2p}) - E_u$. Then u is in S and S/u is a weak dominating set for $\Gamma(Z_{2p})$. Clearly, $\gamma_w(\Gamma(Z_{2p}-E_u)) \geq \gamma_w(\Gamma(Z_{2p})$. Hence, $\gamma_w(\Gamma(Z_{2p})) = |E_u| = d(u) = \Delta(\Gamma(Z_{2p}))$.

Conversely, let $\gamma_w(\Gamma(Z_{2p})) = \Delta(\Gamma(Z_{2p}))$. Using Theorem 2.2, $\Gamma(Z_{2p})$ is a star graph, namely $K_{1,p-1}$.

Theorem 4. If p is any prime number, then $\gamma_w(\Gamma(Z_{p^2})) = 1$.

Proof. If p is any prime, then $V(\Gamma(Z_{p^2})) = \{p, 2p, 3p, 4p,, (p-1)p\}$. Clearly p is adjacent to all the vertices in $\Gamma(Z_{p^2})$. Also note that, any two vertices in $\Gamma(Z_{p^2})$ is adjacent and hence $\Gamma(Z_{p^2})$ is a complete graph, namely K_{p-1} .

Let W be a subgraph of $\Gamma(Z_{p^2})$ defined by $\Gamma(Z_{p^2}) - e = W$. Clearly, W is obtained by removing an edge from $\Gamma(Z_{p^2})$. Since, the degree of all the vertices in $\Gamma(Z_{p^2})$ is p-2. That is, d(u)=d(v)=p-2, where $u,v\in V(\Gamma(Z_{p^2}))$. Let e be an edge from a vertex u to a vertex v, then d(u)=d(v)=p-3, where $u,v\in W=V(\Gamma(Z_{p^2})-e)$. It seems that W contains two vertices of degree p-3. Let, S be a weak domination set of W, then S=u,v and d(w)>d(u)=d(v), where any vertex $w\in V(\Gamma(Z_{p^2}))$. Thus, $\gamma_w(W)=|S|=2>1=\gamma_w(W+e)=\gamma_w(\Gamma(Z_{p^2}))$.

Theorem 5. If p and q are distinct prime numbers with p < q, then $\gamma_w(\Gamma(Z_{pq}) = q - 1$.

Proof. The proof is by the method of induction on p and q. The vertex set of $\Gamma(Z_{pq})$ is $\{p, 2p, 3p, ..., p(q-1), q, 2q, 3q, ..., (p-1)q\}$.

Case (i) Let p = 2, q is any prime > 2. Using theorem (3.1), $\gamma_w(\Gamma(Z_{2q}) = q - 1$.

Case (ii) Let p = 3, q is any prime > 3.

The vertex set of $\Gamma(Z_{3q})$ is $\{3,6,9,...,3(q-1),q,2q\}$. Let u and v are two vertices in $\Gamma(Z_{3q})$ with maximum degree. Let u=q and v=2q, then there exist any other vertex $w \neq q \neq 2q$ in $\Gamma(Z_{3q})$ such that w is adjacent to both u and v. That is, uw=vw=0. But $uv=2q^2$ which does not divide by 3q. Therefore u and v are non-adjacent vertices. Then the vertex set V can be partition into two parts V_1 and V_2 such that $V_1=\{u,v\}=\{q,2q\}$ and $V_2=\{3,6,9,...,3(q-1)\}$. Clearly $|V_1|=2$ and $|V_2|=q-1$, then $|V|=|V_1|+|V_2|=2+q-1=q+1$. Note that the vertices in the second partite set have the smallest degree. Since, 2 < q-1, then to weakly dominate these vertices, we need include all of them in any weakly dominating set. Clearly, every vertex in V_2 which weakly dominate all the vertices in V_1 . Hence, $\gamma_w(\Gamma(Z_{3q}))=|V_2|=q-1$.

Case (iii) Let p = 5, q is any prime > 5.

The vertex set of $\Gamma(Z_{5q})$ is $\{5, 10, ..., 5(q-1), q, 2q, 3q, 4q\}$. Clearly, number of vertices in $\Gamma(Z_{5q}) = q+3$. Let u and v be any two vertices in $\Gamma(Z_{5q})$ with maximum and minimum degree, respectively. Let u=q and v=10, then 5q must divide uv which implies that u and v are adjacent. Let u=q and w=2q then 5q does not divide $uw=2q^2$, which implies that u and w are non-adjacent vertices. Then the vertex set V can be partitioned into two parts V_1 and V_2 , where $V_1 = \{q, 2q, 3q, 4q\}$ and $V_2 = \{5, 10, ..., 5(q-1)\}$. Clearly any two vertices in V_1 are non-adjacent as same as V_2 . Finally we note that, every vertex in V_1 is adjacent to all the vertices in V_2 . Moreover $V(\Gamma(Z_{5q})) = V_1 \cup V_2$ and $V_1 \cap V_2 = \phi$. It seems that the vertices in the second partite set have the smallest degree. Because, $|V_2| > |V_1|$ implies that every vertex in V_2 is dominating all the vertices in V_1 and hence $\gamma_w(\Gamma(Z_{5q})) = |V_2| = q-1$.

Case (iv) Let p < q.

The vertex set of $\Gamma(Z_{pq})$ is $\{p, 2p, 3p, ..., p(q-1), q, 2q, 3q, ..., (p-1)q\}$. Let v=p and w=p(q-1) in $\Gamma(Z_{pq})$ the pq does not divides $uw=p^2(q-1)$. Clearly v and w are non-adjacent vertices. Let u=q and v=p then pq must divides uv, which implies that u and v are adjacent vertices. So the vertex set V can be partition into two parts V_1 and V_2 which implies that the vertex p, multiples of p are in V_1 and q, multiples of q are in V_2 . Clearly every vertices in V_1 are non-adjacents same as V_2 . Then, $|V| = |V_1| + |V_2| = p-1+q-1=p+q-2$. Since p<q, then $|V_1|<|V_2|$. Clearly, d(u)< d(v) where $u\in V_1$ and $v\in V_2$. Let $v\in V_1$ then by removing all edges incident with v, we obtain a graph H containing two components K_1 and $K_{p-2,q-1}$. Hence,

$$\gamma_w(H) = \gamma_w(K_1) + \gamma_w(K_{p-2,q-1}) = 1 + q - 1 > q - 1 = \gamma_w(\Gamma(Z_{pq})).$$

Theorem 6. For any graph $\Gamma(Z_{2^n})$, where n > 2 is a positive integer, then

a) If n is even,
$$\gamma_w(\Gamma(Z_{2^n})) = 2^{\frac{n}{2}} \sum_{i=0}^{\frac{n-4}{2}} 2^i + 1$$
.

a) If
$$n$$
 is even, $\gamma_w(\Gamma(Z_{2^n})) = 2^{\frac{n}{2}} \sum_{i=0}^{\frac{n-4}{2}} 2^i + 1$.
b) Otherwise, $\gamma_w(\Gamma(Z_{2^n})) = 2^{\frac{n-1}{2}} \sum_{i=0}^{\frac{n-3}{2}} 2^i$.

Proof. The vertex set of $\Gamma(Z_{2^n})$ is $\{2, 4, ..., 2(2^{n-1} - 1)\}$ and $|V(\Gamma(Z_{2^n}))| =$ $2^{n-1}-1$. The proof is by the method of induction on n.

Case (a) n is even.

Subcase (i) Let n=4.

The vertex set of $\Gamma(Z_{24})$ is $\{2,4,6,8,10,12,14\}$. Let S be a vertex subset of V such that $d(u) \leq d(v)$, where $u \in S$ and $v \in N(S)$. Let P be a set of all pendant vertices in $\Gamma(Z_{2^4})$. Clearly, $P = \{2, 6, 10, 14\}$ with d(u) = 1, for all $u \in P$. It seems that $P \subseteq S$. Let $v = 2^{n-1} = 2^{4-1} = 8$ and w be any other vertex in $\Gamma(Z_{2^4})$. Suppose $w = 2^4 - 2$, then $vw = 8 \times (2^4 - 2) = 112$. Clearly, 2^4 must divides 112. Thus, the vertex v is adjacent to all vertices in $\Gamma(Z_{24})$ which implies $v = 8 \in N(S)$. Let x = 4 and y = 12 be the remaining vertices in V such that xv = yv = 0. That is, x, y and v are adjacent vertices. Clearly, either $x=4\in S$ or $y=12\in S$. Suppose, $x,y\in S$, we get a contradiction for our definition that no two vertices in S are adjacent. Finally we conclude that S = $\{2,4,6,10,14\}$ or $S=\{2,6,10,12,14\}$ and $N(S)=\{8,12\}$ or $N(S)=\{4,8\}$, respectivily. Since, degree of any vertex in S is less than or equal to degree of any vertex in N(S) and no two vertices in S are adjacent which implies that $\gamma_w(\Gamma(Z_{2^{n-4}})) = |S| = 5 = 2^2 + 2^0 = 2^{4/2}(2^0) + 2^0 = 2^{n/2} \sum_{i=0}^{\frac{n-4}{2}} 2^i + 1.$

Subcase (ii) Let
$$n = 6$$
.

The vertex set of $\Gamma(Z_{2^6})$ is $\{2,4,6,...,62\}$. Let S be a vertex subset of V such that $d(u) \leq d(v)$, where $u \in S$ and $v \in N(S)$. Let P be a set of all pendant vertices in $\Gamma(Z_{26})$. Clearly, $P = \{2, 6, ..., (2^6 - 2)\}$ with d(u) = 1, for all $u \in P$. It seems that $P \subseteq S$. Using subcase (i), let $v = 2^{n-1} = 2^{6-1} = 32$ and $w=2^6-2$ be any other vertex in $\Gamma(Z_{26})$ such that 2^6 must divides vw= $32 \times (2^6 - 2) = 1984$. Thus, the vertex v is adjacent to all vertices in $\Gamma(Z_{26})$ which implies $v = 32 \in N(S)$. Similarly, 2^4 and 3×2^4 are adjacent to all the vertices in $\Gamma(Z_{26})$ except P, then $16,48 \in N(S)$.

Let U be a vertex subset of V with $U = \{4, 12, 20, ..., (2^6 - 4)\}$. Clearly, no two vertices in U is adjacent and every vertex in U is adjacent to $\{16, 32, 48\}$. It seems that d(U) < d(N(S)) which implies that $U \subseteq S$.

Let $W = V - (P \cup U \cup N(S)) = \{8, 24, 40, 56\}$ be a vertex subset of V. Finally, we obtain that the vertices in W make a complete graph, namely K_4 and all the vertices in W are adjacents to N(S). Using theorem (2.4), any one of the vertex in W is in S. Otherwise, if any two vertices in W belongs to S, then we get a contradiction that no two vertices are adjacent in S.

Hence,
$$\gamma_w(\Gamma(Z_{2^6})) = |S| = |P| + |U| + \text{any one vertex in } W.$$

= $16 + 8 + 1 = 25 = 2^4 + 2^3 + 2^0 = 2^3(2^1 + 2^0) + 1$
= $2^{6/2} \sum_{i=0}^{1} 2^i + 1 = 2^{n/2} \sum_{i=0}^{\frac{n-4}{2}} 2^i + 1$, where $n = 6$.

Subcase(iii): Let n > 6 is even.

The vertex set of $\Gamma(Z_{2^n})$ is $\{2,4,...,2^{n-1},2(2^{n-1}-1)\}$ and $|V(\Gamma(Z_{2^n}))|=2^{n-1}-1$. Since P is a pendant vertex set with $|P|=2^{n-2}$. Using above cases,

$$\gamma_w(\Gamma(Z_{2^n})) = |S| = 2^{n-2} + \dots + 2^{\frac{n}{2}} + 2^0$$

$$= 2^{\frac{n}{2}}(2^0 + \dots + 2^{\frac{n}{2}-1}) + 2^0$$

$$= 2^{\frac{n}{2}} \sum_{i=0}^{\frac{n-4}{2}} 2^i + 1, \text{ where } n \text{ is even.}$$

Case (b) n is odd.

Subcase (i) Let n = 3.

The vertex set of $\Gamma(Z_{2^3})$ is $\{2,4,6\}$. Let S be a vertex subset of V such that $d(u) \leq d(v)$, where $u \in S$ and $v \in N(S)$. Let P be a set of all pendant vertices in $\Gamma(Z_{2^3})$. Clearly, $P = \{2,6\}$ with d(u) = 1, for all $u \in P$. It seems that $P \subseteq S$. Let v = 6 and w be any other vertex in $\Gamma(Z_{2^3})$. Suppose w = 2, then vw = 8. Clearly, 2^3 must divides 8. Thus, the vertex v is adjacent to all vertices in $\Gamma(Z_{2^3})$ which implies $v = 4 \in N(S)$. Let x = 2 and y = 6 be the remaining vertices in V such that xv = yv = 0 and $xy \neq 0$. Finally we conclude that $S = \{2,6\}$ and $N(S) = \{4\}$. Hence, $\gamma_w(\Gamma(Z_{2^{n-3}})) = |S| = 2 = 2^{(3-1)/2}(2^0) = 2^{(n-1)/2}\sum_{i=0}^{n-3} 2^i$, where n = 3.

Subcase (ii) Let n = 5.

The vertex set of $\Gamma(Z_{2^5})$ is $\{2,4,...,30\}$. Let P be a set of all pendant vertices in $\Gamma(Z_{2^5})$. Clearly, $P=\{2,6,...,30\}$ with d(u)=1, for all $u\in P$. It seems that $P\subseteq S$. Let v=16 and w be any other vertex in $\Gamma(Z_{2^5})$. Suppose w=2, then vw=32. Clearly, 2^5 must divides 32. Thus, the vertex v is adjacent to all vertices in $\Gamma(Z_{2^5})$ which implies $v=16\in N(S)$. Let U be a vertex subset of V with $U=\{4,8,12,20,24,28\}$. Let x=8 and y=24 be two vertices in U is adjacent to remaining vertices in U. Clearly, d(4)=d(12)=d(20)=d(28)< d(8)=d(24) implies that the vertices $8,24\in N(S)$ and the remaining vertices $4,12,20,28\in S$. Therefore the set $S=\{2,4,6,10,12,14,18,20,22,26,28,30\}$. Hence, $\gamma_w(\Gamma(Z_{2^{n-5}}))=|S|=12=2^3+2^2=2^2(2^1+2^0)=2^{(5-1)/2}(2^1+2^0)=2^{(n-1)/2}\sum_{i=0}^{n-3}2^i$, where n=5.

Subcase (iii) Let n > 5 is any odd number.

Using above two subcases, $\gamma_w(\Gamma(Z_{2^n})) = 2^{(n-1)/2} \sum_{i=0}^{\frac{n-3}{2}} 2^i$, where n is odd number. \square

Theorem 7. If p > 4 is any prime, then $\gamma_w(\Gamma(Z_{4p})) = 2(p-1)$.

Proof. The vertex set of $\Gamma(Z_{4p})$ is

$$\{2,4,6,8,...,2(2p-1),p,2p,3p\}$$

with $|V(\Gamma(Z_{4p}))| = 2p + 1$. Let v = 2p be a vertex and let w be any vertex such that 4p divides vw. Clearly, v is adjacent to all the vertices in $V(\Gamma(Z_{4p}))$. Let P, S, N(S) be the pendant set, minimum degree set, neighbourhood os S, respectively. Since v has maximum degree then $v \in N(S)$.

Case (i) Let p = 5.

The vertex set of $\Gamma(Z_{20})$ is $\{2, 4, ..., 2(10-1), 5, 10, 15\}$ with $|V(\Gamma(Z_{20}))|=$ 11. Let v=2p=10 be a vertex and let w be any vertex such that 20 divides vw. Clearly, v=10 is adjacent to all the vertices in $V(\Gamma(Z_{20}))$ then $10 \in N(S)$. Let x=2 and y=14 then 28 is not divisible by 20 which implies x and y are non adjacent vertices. But xv=yv=0. Then, the pendant set $P=\{2,6,14,18\}$ with degree of any vertex in P is 1 and $P \subseteq S$.

Let $U = \{4, 8, 12, 16\}$ be a vertex subset of $V(\Gamma(Z_{20}))$. Clearly no two vertices in U is adjacent. That is 20 does not divide $32(=4 \times 8)$. It means that no edge connected between the vertices 4 and 8. But, the vertices in U are adjacent to the vertices 5, 10, and 15 with d(4) = d(8) = d(12) = d(16) < d(5) = d(15). Clearly, $U \subseteq S$ and the vertices 5, $15 \in N(S)$.

Hence, $\gamma_w(\Gamma(Z_{20})) = |S| = |P| + |U| = 4 + 4 = 8 = 2 \times 5 - 2 = 2(p-1)$, where p = 5.

Case (ii) Let p = 7.

The vertex set of $\Gamma(Z_{28})$ is $\{2, 4, ..., 2(14-1), 7, 14, 21\}$ with $|V(\Gamma(Z_{28}))| = 2p+1=15$. Let v=2p=14 be a vertex and let w be any vertex such that 28 divides vw. Clearly, v=14 is adjacent to all the vertices in $V(\Gamma(Z_{28}))$ then $14 \in N(S)$. Let x=6 and y=18 then 108 is not divisible by 28 which implies x and y are non adjacent vertices. But xv=yv=0. Then, the pendant set $P=\{2,6,10,18,22,26\}$ with degree of any vertex in P is 1 and $P \subseteq S$.

Let $U = \{4, 8, 12, 16, 20, 24\}$ be a vertex subset of $V(\Gamma(Z_{20}))$. Clearly no two vertices in U is adjacent. That is 28 does not divide $96(=8 \times 12)$. But, the vertices in U are adjacent to the vertices 7, 14, and 21 with $d(4) = d(8) = \dots = d(24) < d(7) = d(21)$. Clearly, $U \subseteq S$ and the vertices 7, $21 \in N(S)$.

Hence, $\gamma_w(\Gamma(Z_{20})) = |S| = |P| + |U| = 6 + 6 = 12 = 2 \times 7 - 2 = 2(p-1)$, where p = 7.

Case (iii) Let p > 7.

The vertex set of $\Gamma(Z_{4p})$ is $\{2,4,...,2(2p-1),p,2p,3p\}$ with $|V(\Gamma(Z_{4p}))|$ = 2p+1. Let v=2p be a vertex and let w be any other vertex such that 4p divides vw. Clearly, v is adjacent to all the vertices in $V(\Gamma(Z_{4p}))$ and $v=2p\in N(S)$. Let P be the pendant vertex set and using above cases, $P=\{2,6,...,2(p-2),2(p+2),...,2(2p-1)\}$. Similarly, Let $U=\{4,...,4(p-1)\}$. Since, no two vertices in U is adjacent. That is, 4p does not divide $32(p-1)(=8\times 4(p-1))$. But, the vertices in U are adjacent to the vertices p,2p, and 3p with d(4)=d(8)=...=d(4(p-1))< d(p)=d(3p). Clearly, $U\subseteq S$ and the vertices $p,3p\in N(S)$ which implies that the vertex set of N(S) is $\{p,2p,3p\}$.

Hence, $\gamma_w(\Gamma(Z_{4p})) = |S| = |P| + |U| = |V(\Gamma(Z_{4p}))| - |N(S)| = 2p + 1 - 3 = 2p - 2 = 2 \times 7 - 2 = 2(p - 1)$, where p is any prime.

Theorem 8. In $\Gamma(Z_{8p})$ where p > 8 is any prime, then $\gamma_w(\Gamma(Z_{8p})) = 4(p-1)$.

Since, the vertex set of $\Gamma(Z_{8p})$ is $\{2, 4, ..., 2(4p-1), p, 2p, 3p, 4p, 5p, 6p, 7p\}$ with $|V(\Gamma(Z_{8p}))| = 4p + 3$. Using Theorem 2.7, $N(S) = \{p, 2p, 3p, ..., 7p\}$ and |N(S)| = 7. Hence, $\gamma_w(\Gamma(Z_{8p})) = |V(\Gamma(Z_{8p}))| - |N(S)| = 4p + 3 - 7 = 4p - 4 = 4(p-1)$.

Theorem 9. In $\Gamma(Z_{2^np})$ where $p > 2^n$ is any prime and n is any positive integer, then $\gamma_w(\Gamma(Z_{2^np})) = 2^{n-1}(p-1)$.

Proof. The vertex set of $\Gamma(Z_{2^np})$ is $\{2,...,2(2^{n-1}p-1),p,2p,....,(2^n-1)p\}$ with $|V(\Gamma(Z_{2^np}))| = 2^{n-1}p + 2^{n-1} - 1$. Using Theorems 2.7 and 2.8, $N(S) = \{p,2p,...,(2^n-1)p\}$.

Hence,
$$\gamma_w(\Gamma(Z_{2^np})) = |V(\Gamma(Z_{2^np}))| - |N(S)| = 2^{n-1}p + 2^{n-1} - 1 - (2^n - 1)$$

= $2^{n-1}(p-1)$.

Theorem 10. For any prime p > 3, $\gamma_w(\Gamma(Z_{3^n})) = 3^{n-1} - 8$.

References

[1] D.F. Anderson, P.S. Livingston, The zero-divisor graph of a commutative ring, J. Algebra, 217, No. 2 (1999), 434-447.

- [2] I. Beck, Coloring of commutative rings, J. Algebra, 116 (1988), 208-226.
- [3] J. Ghoshal, R. Laskar, D. Pillone, C. Wallis, Strong bondage and strong reinforcement numbers of graphs, *Congr. Numerantium* **108** (1995), 33-42.
- [4] T.W. Haynes, S.T. Hedeniemi, P.J. Slater, Fundamentals of Domination in Graphs, Marcel Dekker, Inc., New York (1998).
- [5] D. Rautenbach, Bounds on the weak domination number, Austral. J. Combin., 18 (1998), 245-251.
- [6] J. Ravi Sankar, S. Meena, Changing and unchanging the domination number of a commutative ring, *International Journal of Algebra*, 6, No. 27 (2012), 1343-1352.
- [7] J. Ravi Sankar and S. Meena, Connected domination number of a commutative ring, *International Journal of Mathematical Research*, **5**, No. 1 (2012), 5-11.
- [8] J. Ravi Sankar, S. Sankeetha, R. Vasanthakumari and S. Meena, Crossing number of a zero divisor graph, *International Journal of Algebra*, 6, No. 32 (2012), 1499-1505.
- [9] E. Sampathkumar, L. Pushpa Latha, Strong weak domination and domination balance in a graph, *Discrete Mathematics*, **161** (1996), 235-242.