International Journal of Applied Mathematics

Volume 26 No. 1 2013, 55-57

ISSN: 1311-1728 (printed version); ISSN: 1314-8060 (on-line version)

doi: http://dx.doi.org/10.12732/ijam.v26i1.5

A SIMPLE PROOF OF MIDY'S THEOREM

Abdulkareem Hamarsheh¹, Waseem Jaradat², Salaam Tameeme³

1,2,3 Department of Mathematics

Al-Hussein Bin Talal University

Ma'an, JORDAN

Abstract: In this note we give a method for finding the elements in the period of a periodic rational number. We then use our method to give an elementary proof of Midy's theorem on repeating decimals.

AMS Subject Classification: 97F40, 11A05 Key Words: Midy's Theorem, repeating decimals

1. Introduction

It is well known that a rational number $x = \frac{m}{n}$ with $\gcd(m,n) = 1, n = 2^e \, 5^t \, b$, $\gcd(b,10) = 1$, is periodic and its length of period is the order of 10 modulo b. Some periodic decimals has fascinating properties. For example, according to Dickson [1], E. Midy proved in 1836 that if the period of a reciprocal of a prime $p \geq 5$ has even length and is split into two half-periods then the sum of the halves is a string of 9's.

For example,

$$\frac{1}{7} = 0.\overline{142857}$$

with 142+857=999, and

$$\frac{1}{17} = 0.\overline{0588235294117647}$$

with 05882352+94117647=999999999.

Received: December 18, 2012

© 2013 Academic Publications

Midy's theorem holds also for reciprocals of some composite numbers. For example,

$$\frac{1}{77} = 0.\overline{012987}$$

with 012 + 987 = 999, and

$$\frac{1}{121} = 0.\overline{0082644628099173553719}$$

2. Midy's Theorem

Many authors have given proofs of Midy's theorem: see, for example, [2],[3],[4], and [5]. In this paper we give a very simple proof of Midy's theorem based only on modular arithmetic.

We first give a simple method for finding the elements of the period of the reciprocal of a natural number m relatively prime to 10.

Lemma 1. Let m be relatively prime to 10 and choose $0 \le b_i < m; i = 1, 2, ..., r$ such that $10^i \equiv b_i \mod m$, where r is the order of 10 modulo m. Then $\frac{1}{m} = 0.\overline{a_1 a_2 ... a_r}$, where a_i is congruent modulo 10 to:

- a) $9b_i$ if $m \equiv 1 \mod 10$;
- b) $3b_i$ if $m \equiv 3 \mod 10$;
- c) $7b_i$ if $m \equiv 7 \mod 10$ and
- d) b_i if $m \equiv 9 \mod 10$.

Proof. Choose h_i ; i=1,2,...,r such that $0 \le h_i < m$, $10 = h_1 + ma_1$ and $10h_{i-1} = h_i + ma_i$ for $10 \le i \le r$. Then modulo 10m we have 10m and 10m and 10m and 10m for 10m for 10m Hence 10m for 10m for 10m Hence 10m for 10m for

Now if $m \equiv 1 \mod 10$, then $a_i \equiv -b_i \equiv 9b_i \mod 10$. If $m \equiv 3 \mod 10$, then $3a_i \equiv -b_i$ so $a_i \equiv 3b_i \mod 10$. If $m \equiv 7 \mod 10$, then $7a_i \equiv -b_i$ so $a_i \equiv 7b_i \mod 10$. Finally, if $m \equiv 9 \mod 10$, then $9a_i \equiv -b_i$ so $a_i \equiv b_i \mod 10$.

Now we use our lemma to give a very simple proof of Midy's theorem.

Theorem 1. (see [3]) Let m, b_i and r be as in Lemma 1. If r = 2w is even and $10^w \equiv -1 \mod m$, then

$$\frac{1}{m} = 0.\overline{a_1 a_2 ... a_w a_{w+1} a_{w+2} ... a_{2w}},$$

with $a_i + a_{w+i} = 9$; i = 1, 2, ..., w.

Proof. For i=1,2,...,r we have mod $m,\,b_{w+i}\equiv 10^{w+i}\equiv -10^i\equiv m-b_i$ so $b_{w+i}=m-b_i$. Now if $m\equiv 1 \mod 10$, then by the above lemma $a_i+a_{w+i}\equiv 9b_i+9(m-b_i)=9m\equiv 9$. The three other cases are similar.

Corollary 1. If p is a prime and the period of $\frac{1}{p}$ has even length, say r = 2w, then

$$\frac{1}{p} = 0.\overline{a_1 a_2 ... a_w a_{w+1} a_{w+2} ... a_{2w}},$$

with $a_i + a_{w+i} = 9$; i = 1, 2, ..., w.

Proof. This follows immediately from the above theorem since if r = 2w is the length of the period of $\frac{1}{p}$ then $10^w \equiv -1 \mod p$.

References

- [1] L.E. Dickson, History of the Theory of Numbers, Volume 1, Chelsea (1952).
- [2] A. Gupta, B. Sury, Decimal expansion of $\frac{1}{p}$ and subgroup sums, *Integers: Electronic Journal of Combinatorial Number Theory*, **5** (2005), #A19.
- [3] W.G. Leavitt, A theorem on repeating decimals, Amer. Math. Monthly, 74 (1967), 669-673.
- [4] J. Lewittes, Midy's theorem for periodic decimals, Integers: Electronic Journal of Combinatorial Number Theory, 7 (2007), #A02.
- [5] H.W. Martin, Generalization of Midy's theorem on repeating decimals, *Integers: Electronic Journal of Combinatorial Number Theory*, 7 (2007), #A03.